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Abstract

We introduce a pruning algorithm that prov-
ably sparsifies the parameters of a trained
model in a way that approximately preserves
the model’s predictive accuracy. Our algo-
rithm uses a small batch of input points to
construct a data-informed importance sam-
pling distribution over the network’s parame-
ters, and adaptively mixes a sampling-based
and deterministic pruning procedure to dis-
card redundant weights. Our pruning method
is simultaneously computationally efficient,
provably accurate, and broadly applicable to
various network architectures and data dis-
tributions. Our empirical comparisons show
that our algorithm reliably generates highly
compressed networks that incur minimal loss
in performance relative to that of the origi-
nal network. We present experimental results
that demonstrate our algorithm’s potential
to unearth essential network connections that
can be trained successfully in isolation, which
may be of independent interest.

1 Introduction

The deployment of large state-of-the-art neural net-
works to resource-constrained platforms, such as mo-
bile phones and embedded devices, is often prohibitive
in terms of both time and space. Network pruning
algorithms have the potential to reduce the memory

*These authors contributed equally to this work

(a) MNIST (b) SiPP

(c) Weight (d) Norm

Figure 1: (a): A sample input from the MNIST data-set
and (b)-(d): importances assigned to the weights in the
first layer by various pruning methods, SiPP, Weight (Han
et al., 2015), and Norm (Kundu and Drineas, 2014), for
a fully-connected network. The goal is to assign high im-
portances (yellow or red) to the weights corresponding to
parts of the image where digits tend to appear. Our data-
informed method, SiPP, leverages the structure of the data
distribution and assigns lower importances (black) to the
weights associated with the corners of the image, where
digits do not appear.

footprint and inference time complexity of large neural
network models in low-resource settings. The goal of
network pruning is to discard redundant weights of an
overparameterized network and generate a compressed
model whose performance is competitive with that of
the original network. In addition, network pruning can
be used to reduce the burden of manually designing
a small network by automatically inferring efficient
architectures from larger networks.
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Existing network pruning algorithms are predominantly
based on data-oblivious heuristics (Han et al., 2015)
or low-rank decompositions and sparsifications (Den-
ton et al., 2014, Kundu and Drineas, 2014) that at
most implicitly take the data distribution into account.
Thus, these approaches do not fully capture the impor-
tance of each network parameter (see Fig. 1). Even
when considering the data-distribution, existing ap-
proaches do not provide any provable guarantees (Lee
et al., 2018) or are only applicable to a narrow class of
architectures (Baykal et al., 2018).

We close this research gap by introducing SiPP, a
network pruning algorithm that provably compresses
the network’s parameters in a data-informed manner.
Building and improving on state-of-the-art pruning
methods, our algorithm is simultaneously provably ac-
curate, data-informed, and broadly applicable to var-
ious architectures including Fully-connected (FNNs)
and Convolutional Neural Networks (CNNs).

This paper contributes the following:

1. A robust and versatile pruning algorithm, SiPP,
that combines novel sample size allocation and
adaptive sparsification procedures to prune net-
work parameters

2. An analysis of the algorithms, including the size
and accuracy of the compressed network generated
by our pruning scheme

3. Empirical evaluations for prune-only and iterative
prune + retrain scenarios on fully-connected, con-
volutional, and residual networks, and comparisons
to baseline pruning approaches

2 Related Work

Traditional Approaches Among others, contempo-
rary interest in network pruning was sparked by Denil
et al. (2013), which demonstrates the significant extent
of overparameterization in modern neural networks. To
alleviate computational costs and memory footprint of
large models, traditional techniques such as Singular
Value Decomposition (SVD) and regularized training of
neural networks (Alvarez and Salzmann, 2017, Denton
et al., 2014, Ioannou et al., 2015, Jaderberg et al., 2014,
Kim et al., 2015, Tai et al., 2015, Yu et al., 2017) were
applied to approximate the weight tensorsW with their
low-rank counterparts Ŵ and to induce sparsity of the
weights during training.

Other approaches in this realm exploit the structure of
weight tensors to induce sparsity (Cheng et al., 2015,
Choromanska et al., 2016, Sindhwani et al., 2015, Wen
et al., 2016, Zhao et al., 2017). Another line of work
is that of sampling-based matrix and tensor sparsifi-
cation algorithms (Drineas and Zouzias, 2011, Fung

et al., 2011, Kundu and Drineas, 2014). These meth-
ods generate an importance sampling distribution over
the entries of tensor W and obtain a sparse tensor Ŵ
by sampling and reweighing the entries of W . These
approaches either impose constraints on the structure
of the weights, lack theoretical guarantees, or only
provide norm-based error bounds on the tensor approx-
imation, i.e., on ||W − Ŵ ||. Our work, in contrast, is
a data-informed approach with guarantees on the size,
relative error incurred at each output, and accuracy of
the compressed network.

Network Pruning Weight pruning (LeCun et al.,
1990) hinges on the idea that only a few dominant
weights within a layer are required to approximately
preserve the output. Approaches of this flavor were
investigated by Dong et al. (2017), Lebedev and Lem-
pitsky (2016), e.g., by embedding sparsity as a con-
straint (Aghasi et al., 2017, Iandola et al., 2016, Lin
et al., 2017). A popular weight-based pruning method
is that of Han et al. (2015), where weights with abso-
lute values below a threshold are removed. A recent
approach of Lee et al. (2018) prunes the parameters
of the network by using a mini-batch of data points
to approximate the influence of each parameter on the
loss function of a randomly initialized network. Unlike
our approach, modern pruning algorithms lack rigor-
ous theoretical analysis of the effect that the discarded
weights can have on the model’s performance.

Theoretical Foundations Recently, Arora et al.
(2018) introduced a compression method based on the
Johnson-Lindenstrauss (JL) Lemma and proved norm-
based bounds on the performance of the compressed
network for points in the training set only under the as-
sumption of p-wise filter independence. In contrast, our
work provides more general and stronger entry-wise
guarantees on the network’s performance that hold
even for points outside the training set. A coresets-
based (Braverman et al., 2016, Feldman and Lang-
berg, 2011) approach for provably compressing fully-
connected networks was introduced by Baykal et al.
(2018) but does not extend to other type of networks.
Our approach, on the other hand, is widely applica-
ble to various network architectures, including CNNs,
exhibits stronger theoretical properties by mixing de-
terministic and sampling-based pruning strategies, and
leverages our error bounds to optimally allocate sample
sizes across the network’s filters and layers.

3 Problem Definition

The set of parameters θ of a CNN with L convolutional
layers is a tuple of 4-dimensional weight matrices cor-
responding to each layer, i.e., θ = (W 1, . . . ,WL). The
set of parameters θ defines the mapping fθ : X → Y
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Small batch of input points Compute edge sensitivities 
for every neuron

Original Pre-trained Network

Importances take into account activations

Original Pre-trained Network

Sparsify the incoming edges 
to each neuron

Compressed Network

Sample and reweigh edges; 
remove unsampled weights

Importance Sampling

Output compressed network

Figure 2: The overview of our method consisting of 4 parts. We use a small batch of input points to quantify the
relative contribution (importance) of each edge to the output of each neuron. We then construct an importance sampling
distribution over the incoming edges and sample a small set of weights for each neuron. The unsampled parameters are
then discarded to obtain the resulting compressed network.

from the input space X to the output space Y . We con-
sider the setting where a neural network fθ(·) has been
trained on a training set of independent and identically
distributed (i.i.d.) samples from a joint distribution
defined on X × Y, yielding parameters θ. We let D
denote the marginal distribution over the input space
X and define the size of the parameter tuple θ, nnz(θ),
to be the number of all non-zero entries in the weight
tensors W 1, . . . ,WL.

For given ε, δ ∈ (0, 1), our overarching goal is to use
a randomized algorithm to generate a sparse reparam-
eterization θ̂ of θ such that nnz(θ̂) � nnz(θ) and for
x ∼ D the reference network output fθ(x) can be
approximated by fθ̂(x) up to 1± ε entry-wise1 multi-
plicative error with probability greater than 1− δ, i.e.,
Pθ̂,x(fθ̂(x) ∈ (1± ε)fθ(x)) ≥ 1− δ.

4 Method

In this section, we present the core sparsification proce-
dures used by our algorithm SiPP: Sensitivity-informed
Provable Pruning (see Fig. 2). We introduce random-
ized (Alg. 1) and deterministic (Alg. 2) algorithms
for pruning the parameters of a given filter and show
how they can be adaptively mixed (Alg. 3) to generate
sparse filters that incur smaller error (Sec. 4.2). The
algorithm in full that utilizes the procedure to opti-
mally allocate a given sampling budget across filters in
all layers (as outlined in Sec. 5.5) can be found in the
supplementary (Sec. A).

1For two tensors T1, T2 of same dimensions, T1 ∈ (1±
ε)T2 denotes that for each scalar entry t1 in tensor T1,
t1 ∈ (1± ε)t2, where t2 is the corresponding entry in T2.

4.1 Parameter Importance via Sensitivity

Our pruning pipeline is shown in Fig. 2. Our pruning
algorithm SiPP is based on a data-informed definition
of sensitivity, i.e., parameter importance, that is com-
puted by utilizing a small batch of validation points.
To compute the sensitivity of each filter parameter, we
obtain the set S ⊂ X by sampling a small batch of
points from the set of validation points P ⊂ X (first
step, Fig. 2). Using the points in S, we define the
sensitivity of each filter parameter as the maximum
relative contribution of the parameter to the output
of the next layer (second step, Fig. 2; Line 1, Alg. 3).
In effect, important parameters that have a relatively
large impact on the output have sensitivities close to 1,
whereas those with a negligible influence on the output
have sensitivities close to 0. The value of each patch
a(x) can be computed from the output A`−1(x) for
each x ∈ S.

Algorithm 1 Randomized
Input: I, w,m: as in Alg. 3; (sj)j∈I : sensitivities
1: qj ← sj/

∑
k∈I sk; ∀j ∈ I

2: K ∼Multinomial(q,m);
3: for j ∈ I do
4: ŵj ← Kj wj

mqj
; {Entries are reweighted to ensure unbi-

asedness of our estimator}
5: end for
6: return ŵ;

Our core sampling scheme is denoted by Random-
ized (Alg. 1) and is illustrated in the third step in
Fig. 2. Randomized uses the sensitivities to construct
an importance sampling distribution over the filter pa-
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rameters (Line 1, Alg. 1) and samples m parameters
from the filter accordingly (Line 2). Intuitively, if a
parameter has a high impact on the output, then it
should be kept with high probability, and vice-versa.
The sampled weights are then reweighed to ensure that
the resulting sparse filter ŵ is an unbiased estimator
for the output value. As we will see in Sec. 5, our for-
mulation of sensitivity enables us to analytically bound
the variance of our estimator.

Algorithm 2 Deterministic
Input: I, w,m: as in Alg. 3; (sj)j∈I : sensitivities
1: sm ← mth largest value of {sj : j ∈ I};
2: Im ← indices of the largest m values of (sj)j∈I where

ties are broken arbitrarily
3: for j ∈ Im do
4: ŵj ← wj ;
5: end for
6: return ŵ;

Algorithm 3 Sparsify(I, w,m, δ,S,A,K)

Input: I: set of filter parameter indices; w: filter to
sparsify; m: number of parameters to keep, δ ∈ (0, 1):
failure probability; S ⊆ P: batch of validation points; A:
set of patch maps; K: constant from Asm. 1 Output: ŵ:
sparse weight tensor
1: sj ← maxx∈S maxa(·)∈A

wjaj(x)∑
k∈I wkak(x)

; ∀j ∈ I
{Compute parameter importances}

2: S ←
∑
j∈I sj ; S̃ ← SK log(8η/δ);

3: εrandomized ← S̃+
√
S̃(S̃+6m)

m
;

4: εdeterministic ← 3K
∑
j∈(I\Im) sj ; {where Im is the set

of indices of the largest m values in (sj)j∈I}
5: if εrandomized > εdeterministic then
6: return Deterministic(I, w,m, (sj)j∈I);
7: end if
8: return Randomized(I, w,m, (sj)j∈I);

4.2 Randomized and Deterministic Pruning

Deterministic (Alg. 2) is a variant of Randomized
that, for a given sample sizem, deterministically selects
the parameters with the topm sensitivities and discards
the rest. In Sec. 5 we show that in order to achieve
a bound of ε ∈ (0, 1) on the relative error incurred
by the sparsified filter ŵ, the number of samples m
to our randomized algorithm must be of order ε−2.
This requirement on m cannot be avoided by sampling-
based methods in general (Tropp et al., 2015). Thus, if
the sample size is too small, our deterministic variant
may perform better. To get the best of both worlds,
we introduce Sparsify (Alg. 3), an algorithm that
adaptively invokes the randomized or deterministic

procedure (Lines 3-8) by comparing the corresponding
error bounds established in Sec. 5.

5 Analysis

In this section, we establish the theoretical guarantees
of our core pruning procedure (Alg. 3) and state our
main compression theorem. The full proofs can be
found in the supplementary material.

5.1 Notation

We let the 4-dimensional tensor W ` ∈ Rκ`
1×κ

`
2×c

`−1×c`

denote the weights of each convolutional layer ` ∈ [L] =
{1, . . . , L}, where κ`1 and κ`2 are the spatial dimensions
of the kernel in layer ` and c`−1 and c` are the number
of channels in layers ` − 1 and `, respectively. For a
given input x = A0(x) ∈ X to the network, we let
A`(x) ∈ Rs`1×s`2×c` denote the input feature map of
height s`1 and width s`2 to convolutional layer `+ 1. We
let η` ∈ N denote the number of scalar values of A`(·),
i.e., η` = s`1 · s`2 · c`, and let η =

∑L
`=1 η

`. Finally, we
let ρ` = nnz(W `) denote the number of parameters in
the tensor W ` and let ρ∗ = max`∈[L] ρ

`.

For each layer ` ∈ [L], let A`−1 denote the set of
patch maps a : X → Rκ`

1×κ
`
2×c

`−1

, where a(x) maps
x ∈ X to the corresponding kernel patch in the in-
put image A`−1(x). Note that |A`−1| = s`1 · s`2 by
definition. The pre-activation tensor of layer ` is de-
noted by Z`(x) ∈ Rs`1×s`2×c` , where for each entry
(h, g, r) ∈ [s`1]× [s`2]× [c`] and corresponding patch map
a(·) = A`−1

h,g , each entry is defined by the tensor dot
product Z`h,g,r(x) = 〈W `

:,:,:,r, a(x)〉. The input feature
map is defined by the general non-linearity2 function φ
between two convolutional layers, i.e., A`(x) = φ(Z`).

5.2 Preliminaries

We begin by considering the sparsification of an arbi-
trary filter indexed by r ∈ [c`] in an arbitrary layer
` ∈ [L], denoted by w = W `

:,:,:,r ∈ Rκ`
1×κ

`
2×c

`−1

and let
I = [κ`1] × [κ`2] × [c`−1] denote the parameter index
set. For ease of exposition, we henceforth omit explicit
references to the layer `, and assume that the filter w
consists of non-negative entries. The generalization to
all weights can be found in the supplementary (Sec. B).

Our overarching goal is to keep weights of high influence
and discard redundant ones by defining an appropriate

2For sake of simplicity we assume that φ is the element-
wise ReLU function, which implies that A`(x) ≥ 0 entry-
wise. Our analysis can be generalized – by adapting the
input ε – to account for more general non-linearities, e.g.,
ones that include batch-normalization.
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importance sampling distribution that captures the
relative contribution of each parameter to the output
of the convolutional layer. To gauge the relative im-
portance of each weight of filter indexed by r ∈ [c`]
on the output Z(x), we quantify the relative impor-
tance of each filter parameter j ∈ I with respect to the
corresponding patch maps A and an input x ∈ X as
gj(x) = maxa(·)∈A wj aj(x)/

∑
k∈I wk ak(x).

To obtain sufficiently accurate approximations of pa-
rameter importance, rather than using the value of
gj(x) for a single point x ∼ D, we consider the max-
imum value of gj(·) over a batch of randomly drawn
points S ⊂ X and formally define the empirical sensi-
tivity of each parameter j ∈ I as sj = maxx∈S gj(x) =
maxx∈S maxa(·)∈A wj aj(x)/

∑
k∈I wk ak(x).

To ensure that a small batch of points S suffices for an
accurate approximation of parameter importance, we
impose the following mild assumption on the Cumula-
tive Distribution Function (CDF) of gj(x). Traditional
distributions such as the Gaussian, Uniform, and Expo-
nential, among others, supported on the interval [0, 1]
satisfy Assumption 1 with sufficiently small values of
K and K ′.

Assumption 1 (Baykal et al. (2018)). There exist
universal constants K,K ′ > 0 such that for all j ∈
I, the CDF of the random variable gj(x) for x ∼ D,
denoted by Fj (·), satisfies Fj (Mj/K) ≤ exp (−1/K′) ,
where Mj = min{y ∈ [0, 1] : Fj (y) = 1}.

5.3 Importance Sampling Bounds for
Positive Weights

Lemma 1 establishes a core result that relates the sum
of weighted activations with respect to the sparse filter
ŵ, ẑ(x) =

∑
k∈I ŵk ak(x), to the ground-truth sum

z(x) =
∑
k∈I wk ak(x).

Lemma 1. For δ ∈ (0, 1), invoking Randomized as
in Alg. 3 with m ∈ N satisfying m > 8S̃, and a set S ⊆
X composed of dK ′ log (2 ρ∗/δ)e i.i.d. points drawn
from D generates a filter ŵ such that nnz(ŵ) ≤ m and
for an arbitrary patch map a(·) ∈ A and x ∼ D,

P (|ẑ(x)− z(x)| ≥ εmz(x)) ≤ δ,

where ẑ(x) and z(x) are with respect to patch map a(·),

εm =


√√√√ S̃

m

(
S̃

m
+ 6

)
+
S̃

m

 ∈ (0, 1),

S̃ = SK log(4/δ), and S =
∑
j∈I sj.

As an immediate corollary to Lemma 1, we obtain a
bound on the relative error in terms of the sample
complexity, which we will subsequently use to optimize

the sample size across filters in different layers with
respect to an allotted sample budget (see Sec. 5.5).

Likewise, we establish a guarantee on the output of
a sparse filter ŵ generated in a deterministic fashion
according to Alg. 2.
Lemma 2. In the context of Lemma 1, invoking
Deterministic(I, w,m, (sj)j∈I) generates a filter ŵ
such that for an arbitrary patch map a(·) ∈ A and
x ∼ D, P (|ẑ(x)− z(x)| ≥ εmz(x)) ≤ δ

2 , where εm =
3K

∑
j∈(I\Im) sj and Im is the set of indices of the

largest m values in (sj)j∈I .

The following theorem follows immediately from Lem-
mas 1 and 2 and establishes the error guarantee of our
hybrid approach that adaptively mixes deterministic
and sampling-based constructions of ŵ.
Theorem 3. For any δ ∈ (0, 1) and an
integral sample size m satisfying m >
8S̃, Sparsify(I, w,m, δ,S,A,K) returns
a filter ŵ such that nnz(ŵ) ≤ m and
P (|ẑ(x)− z(x)| ≥ εmz(x)) ≤ δ, where εm =

min
{√

S̃
m

(
S̃
m + 6

)
+ S̃

m , 3K
∑
j∈(I\Im) sj

}
.

5.4 Main Theorem

In this section we outline the details of generalizing
Theorem 3 which pertains to preserving a single output
of a filter to obtain an error guarantee for the output of
entire compressed network. Our analysis of preserving
a single output z(x) from Sec. 5.3 can be generalized to
establish bounds for all weights by decomposing each
weight into its positive and negative components, i.e.,
w = w+−w−, w+, w− ≥ 0, and applying our analytical
results established in the previous subsection to each
component. We then apply this result to each output
of every filter in a layer to obtain layer-wise guarantees,
i.e., Ẑ`(x) ∈ (1± ε)Z(x)`, and subsequently conduct a
careful error propagation analysis through the layers
to obtain our main theorem. Our main result is stated
below for completeness. We refer the reader to the
supplementary (Sec. B) for the proofs and technical
details in full.
Theorem 4. For given ε, δ ∈ (0, 1) and a
set of parameters θ = (W 1, . . . ,WL), SiPP
(Alg. 4 in supplementary) generates a set of com-
pressed parameters θ̂ = (Ŵ 1, . . . , ŴL) such that
Pθ̂, x∼D

(
fθ̂(x) ∈ (1± ε)fθ(x)

)
≥ 1− δ, and

nnz(θ̂) = O

 L∑
`=1

∑
r∈[c]`

L2 (∆`→)2 S`rK log(η/δ)

ε2

 ,

where S`r is the sum of sensitivities with respect to filter
r ∈ [c`] and layer ` ∈ [L].
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5.5 Informed Sample Size Allocation

Suppose we are given a sampling budget B ∈ N as input
that constrains our compression such that nnz(θ̂) ≤ B.
For clarity of exposition, we will present the sample
allocation procedure for a single 4 dimensional tensor
W ` that contains non-negative entries, as the gener-
alization of our procedure to all weights and layers
is straightforward. Now let δ ∈ (0, 1) and note that
by application of Lemma 1 and the the union bound,
we know that for filter r ∈ [c`], if Randomized is
invoked with an integral sample size mr satisfying
mr > 8S̃r, then the probability of the event that
∃a(·) ∈ A : |ẑ(x)− z(x)| ≥ εr(mr)z(x), is bounded
above by |A|δ/2η, where εr(mr) and S̃r are as in Alg. 3.

Our objective is to pick the optimal sample size
mr ∈ N+ for each filter r ∈ [c`] subject to the sam-
pling constraint B such that the sum of relative errors
over all r ∈ [c`] is minimized. To perform this inte-
gral optimization efficiently, we consider the fractional
relaxation of the integer program, i.e.,

min
(m1,...,mc`

)

∑
r∈[c`]

εr(mr)

s.t.
∑
r∈[c`]

mr ≤ B and ∀r ∈ [c`] mr ≥ 8S̃r.

This is a convex optimization problem since each sum-
mand εr(mr) is convex. In particular, it is an instance
of the classic water filling problem (Boyd and Vanden-
berghe, 2004) and can be solved efficiently in practice
using standard convex optimization libraries (Diamond
and Boyd, 2016). The optimal solution of the fractional
relaxation can then be rounded to the nearest integer
using a randomized rounding scheme (Srinivasan, 1999)
to generate provably competitive integral solutions.

6 Experiments

In this section, we evaluate and compare the per-
formance of our algorithm, SiPP, on pruning fully-
connected, convolutional, and residual networks. For
each network, we assessed the loss in accuracy with
respect to both prune-only and iterative prune + re-
train compression schemes. We qualitatively compared
the algorithmic properties of our approach and evalu-
ated its ability to accurately capture the importance
of each parameter and wisely allocate the sampling
budget across layers. All experiments were conducted
on a NVIDIA GTX 1080Ti with 11GB RAM using
PyTorch Paszke et al. (2017).

6.1 Experimental Setup

Architectures and data sets As our baseline com-
parisons, we considered the fully-connected network

LeNet300-100 (LeCun et al., 1998) and the convolu-
tional network LeNet5 (LeCun et al., 1990), the residual
networks Resnet20 (He et al., 2016) and WideResNet16
(WRN16) (Zagoruyko and Komodakis, 2016). All net-
works were trained with Stochastic Gradient Descent
(SGD) with cross-entropy loss, where 10% of the train-
ing data set was used as the validation set and the
remainder was used for training. Additional details of
the experimental setup can be found in Sec. E of the
supplementary.

Compared Algorithms We compared the perfor-
mance of our algorithm to the following pruning prun-
ing approaches. We refer the reader to the supplemen-
tary (Sec. F) for more details on each method.

1. Singular Value Decomposition (SVD): based on
decomposing the weight tensors into their low-rank
counterparts (Denton et al., 2014, Yu et al., 2017)

2. `1+`2/2 (also labeled "Norm") (Kundu and Drineas,
2014): a randomized matrix sparsification scheme
that samples weights according to a convex com-
bination of their `1- and `2-norms

3. Weight Thresholding (also labeled "Weight") (Han
et al., 2015): based on discarding weights with
absolute values below a threshold

6.2 Pruning without Retraining

We first consider the baseline effectiveness of each prun-
ing algorithm in generating an accurate, compressed
model without retraining. For each network architec-
ture, we prune the network down to various specified
sparsity ratio, and report the accuracy of the pruned
network on the test data set. We evaluate the perfor-
mance of each algorithm on 15 equally-spaced sparsity
ratios for each network, and average the results over
3 repetitions and 3 trained networks (with differing
random seeds) per sparsity ratio.

The first row of Fig. 3 depicts the results of our evalu-
ations and comparisons for varying levels of network
sparsity. Our algorithm, SiPP, consistently outper-
forms competing approaches in generating more ac-
curate pruned networks for virtually all of the target
sparsity ratios. The improvement over Weight Thresh-
olding (WT) is modest, but consistent across all of
our evaluations for the prune-only setting. We high-
light that our pruning algorithm generates models with
commensurate accuracy at comparatively high levels of
sparsity – e.g., 5x compression for LeNet300-100 and
LeNet5 – even without a fine-tune step. The shaded
regions corresponding to values within one standard
deviation also show that our algorithm’s performance
exhibits lower variance across varying trials and trained
networks.



Cenk Baykal∗, Lucas Liebenwein∗, Igor Gilitschenski, Dan Feldman, Daniela Rus

10 20 30 40
Retained Parameters (%)

20

40

60

80
Te

st
 E

rro
r (

%
)

Lenet 300, 100, MNIST
Reference Net
SiPP
SVD
1 + 2

2
Weight Thresholding

10 15 20 25 30
Retained Parameters (%)

20

40

60

80

Te
st

 E
rro

r (
%

)

Lenet 5, MNIST

Reference Net
SiPP
SVD
1 + 2

2
Weight Thresholding

20 30 40 50 60
Retained Parameters (%)

20

40

60

80

Te
st

 E
rro

r (
%

)

resnet20, CIFAR10

Reference Net
SiPP
SVD
1 + 2

2
Weight Thresholding

2 3 4 5 6
Retained Parameters (%)

1.4

1.6

1.8

2.0

Te
st

 E
rro

r (
%

)

Lenet 300, 100, MNIST

Reference Net
SiPP
Weight Thresholding

(a) LeNet300-100
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Figure 3: The performance of the evaluated pruning methods against various architectures and data sets, where the first
and second row correspond to prune-only and iterative prune + retrain schemes. The x-axis denotes the percentage of the
parameters that are kept after pruning, i.e., the values on the x axis correspond to 1 - (sparsity ratio). The shaded region
depicts the values within one standard deviation of the mean. Our algorithm, SiPP, reliably – and with lower variance –
outperforms or matches the performance of the compared methods for various levels of target sparsity.

6.3 Iterative Pruning with Fine-tuning

In practice, it is common to combine the pruning step
with a fine-tuning step in an iterative fashion in order
to improve the pruned model’s accuracy. In this experi-
ment, we consider the objective of compressing a given
trained network as much as possible while retaining the
predictive power of the original model. We use a har-
monic progression of the sparsity ratios to iteratively
prune and fine-tune the networks (see Sec. E in the
supplementary for details).

The second row of Fig. 3 summarizes the results of the
prune + retrain procedure that was iterated on until
the pruned model was approximately 1-2% and 9% of
the original model’s size for LeNet and ResNet20 archi-
tectures, respectively. The results were averaged across
3 repetitions and 3 trained networks. The figures show
the comparisons with Weight Thresholding (WT) (Han
et al., 2015) with the plots of the other approaches
omitted due to the fact that WT’s pruning perfor-
mance was consistently and by far the best among the
baseline approaches. Our results are consistent with
the fact that, to date, WT has been the prominent
choice for network pruning applications (Frankle and
Carbin, 2018) and has been shown to be the most prac-
tical and time-efficient way of reducing the number
of network parameters among contemporary pruning
algorithms (Pitas et al., 2019).

Our empirical evaluations show that our algorithm
reliably outperforms or matches the performance of
WT. For example, for LeNet5, a network compressed
with SiPP achieves a test error that is within 0.2% of
the original network with ≈ 95% sparsity, compared to
only ≈ 92% sparsity for WT. A similar trend can be
seen for LeNet300-100, where we attain commensurate
accuracy for ≈ 96% sparsity, compared to 95% for WT.
For all of the scenarios evaluated, our method also
exhibits lower variance and tends to perform better
at extremely high sparsities. For LeNet300-100, for
example, we observe that our approach is strictly better
for sparsities above ≈ 97%.

Our algorithm exhibits similar performance increases
over WT as we consider deeper and wider networks.
For Resnet20 (third column, Fig. 3), SiPP achieves
a modest, but noticeable and consistent improvement
over WT: we can prune over ≈ 77% of the parameters
with commensurate accuracy, compared to 75% for WT.
We achieve improved accuracy relative to the accuracy
of the original network and WT for sparsities of up to
70%. Similarly, Fig. 4 depicts the performance of our
algorithm on WideResnet-16-8, a wide residual network.
We observe that in this scenario, SiPP significantly
outperforms WT, especially at high sparsities: SiPP
preserves the original model’s accuracy at around 40%
sparsity, compared to 25% for WT (not shown in the
figure).
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Figure 4: The performance of our algorithm compared
to that of Weight Thresholding for iteratively pruning a
Wide Residual Network (WRN16) trained on CIFAR-10.
SiPP generates sparser, more accurate models than the
best-performing baseline method.

6.4 Retaining Important Connections

Recent work suggests that the value of network pruning
may lie in identifying and retaining essential network
connections, rather than in keeping the values of the
weights in the original trained network (Frankle et al.,
2019, Liu et al., 2018). Here, we investigate whether
SiPP is merely keeping the weights with high values
(akin to WT), or whether it can be used to identify
and retain the essential network connections. To do so,
we modify the iterative prune + retrain process from
the previous subsection so that in each iteration, after
pruning the network, the parameters that are kept are
randomly initialized prior to the retraining procedure.
We refer to this process as iterative prune + random-
init + retrain. Since the retained weights are randomly
initialized before the retraining procedure, the values
of the weights prior to pruning have no influence on
the resulting fine-tuned network – only the retained
connections, i.e., edges, matter.

Fig. 5 summarizes the results of our evaluations – aver-
aged over 3 networks and 3 repetitions – on the LeNet5
network trained on the MNIST data set. The plot
shows that our algorithm’s performance is consistently
better than that of WT, and this relative improvement
in performance becomes even more pronounced at ex-
treme sparsities. Namely, as the sparsity of the model
exceeds ≈ 96.5%, the connections that are identified by
WT can no longer be trained successfully in isolation
to obtain an accurate model, as can be noted by the
rapid spike in test error. On the other hand, SiPP’s
performance is only slightly worse relative to its perfor-
mance under the traditional prune + retrain scheme
(compare to Fig. 3b), and its variance is significantly
lower than that of WT.
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Figure 5: Results of the iterative prune + random-init +
retrain scheme on LeNet5 trained on the MNIST data set.
The performance of SiPP is strictly better than that of
WT, and SiPP’s relative effectiveness over WT improves
as we increase the sparsity ratio.

7 Conclusion

In this work, we presented a practical network pruning
method, SiPP, that identifies important network con-
nections and prunes redundant ones in a data-informed
way. Our analysis establishes provable guarantees
that quantify the trade-off between the desired model
sparsity and resulting accuracy of the pruned model.
SiPP is easy-to-implement, requires minimal hyper-
parameter tuning, and is computationally efficient –
requiring on the order of a minute to prune even large
networks. Our empirical evaluations show that SiPP
reliably sparsifies modern network architectures with
minimal degradation in model accuracy, and tends
to offer a modest, but noticeable improvement over
competing approaches.

SiPP’s favorable performance in scenarios involving
random re-initialization suggests that our method in-
herently considers the crucial pathways through the
network, and does not merely operate by considering
the properties, e.g., values, of the network parame-
ters alone. Our empirical evaluations suggest that our
approach may be more effective than contemporary
magnitude-based approaches in unearthing essential
connections that can be trained successfully in isola-
tion, and more generally, they highlight the potential
application of SiPP to discovering winning lottery
tickets (Frankle et al., 2019) and efficient architecture
search. As future work, we plan to rigorously investi-
gate the effectiveness of SiPP on these applications,
and on compressing even larger and deeper networks
(e.g. ImageNet experiments).
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A SiPP: Sensitivity-informed Provable Pruning

Our algorithm SiPP in full is given below.

Algorithm 4 SiPP(θ, δ,B,P,K,K ′)
Input: θ = (W 1, . . . ,WL): parameters of the original uncompressed neural network; δ ∈ (0, 1): failure probability; B ∈ N:
sampling budget; P ⊆ X : a set of n i.i.d. validation points drawn from D; K,K′ > 0: universal constants from Asm. 1
1: S ← Uniform sample (without replacement) of dK′ log (4 η ρ∗/δ)e points from P;
2: Populate the patches A`(x) for each x ∈ X and layer ` ∈ [L];
3: Compute the sensitivities for all filter parameters in all layers as in Alg. 3, Line 3 using the computed A`(x) values;
4: Allocate the sampling budget B to obtain the sample size m`+

r ,m`−
r for each r ∈ [c`], ` ∈ [L] as in Sec. 5.5;

5: for ` ∈ [L] do
6: I ← [κ`1]× [κ`2]× [c`−1];
7: Ŵ ` ← 0 ∈ Rκ

`
1×κ

`
2×c

`−1×c` ; {Initialize a 4D null tensor}
8: for r ∈ [c`] do
9: w ←W `

:,:,:,r; {Get the rth filter}
10: I+ ← {j ∈ I : wj > 0};
11: I− ← {j ∈ I : wj < 0};
12: ŵ+ ← Sparsify(I+, w,m`+

r , δ,S,A`−1,K);
13: ŵ− ← Sparsify(I−,−w,m`−

r , δ,S,A`−1,K);
14: Ŵ `

:,:,:,r ← ŵ+ − ŵ−; {Store the resulting sparse filter};
15: end for
16: end for
17: return θ̂ = (Ŵ 1, . . . , ŴL);

For our experiments, we set a small failure probability for δ, i.e., δ = 1.0 × 10−16 and found that our hybrid
approach tended to select the deterministic sub-procedure based on the error bounds most of the time.

B Generalizing to all Weights

In this section we generalize our established results to all weights by resolving three main challenges: (i) relaxing
the requirement that the weights are non-negative, (ii) extending our probabilistic bounds to all r ∈ [c`] filters in
each layer to establish a guarantee on all outputs of a layer, and (iii) propagating and bounding the layer-wise
error across the layers of the network.

For ease of presentation, our analysis focuses on the upper bound of the error incurred by our sampling-based
approach (Alg. 1), which also serves as an upper bound of error our hybrid Sparsify (Alg. 3) procedure since
Sparsify only invokes Deterministic in case the upper bound of Randomized exceeds that of Deterministic.
To this end, we present a useful corollary that provides a sufficient sampling complexity to obtain an (ε, δ)
approximation.
Corollary 5. For any given ε, δ ∈ (0, 1), in the context of Lemma 1, invoking Randomized with sample size

m =
⌈
(6 + 2ε)S K log(4/δ)ε−2

⌉
generates a filter ŵ such that for any arbitrary patch map a(·) ∈ A and x ∼ D,

P

(∑
k∈I

ŵk ak(x) /∈ (1± ε)
∑
k∈I

wk ak(x)

)
≤ δ.

Our analytical results from the previous subsection can be extended in a straightforward way by decomposing the
filter w into its corresponding positive and negative components, i.e., w = w+−w−, where w+, w− ≥ 0 entry-wise
with respective index sets I+, I− ⊆ I. Using this decomposition, we can apply our previous analysis to obtain
bounds on the approximation z+(x) =

∑
k∈I+ wkak(x) ≥ 0 and z−(x) =

∑
k∈I−(−wk)ak(x) ≥ 0 for both positive

and negative weights by separately defining empirical sensitivity over and choosing (weighted) samples from w+

and w− to obtain ŵ+ and ŵ−, respectively. The end result is a sparsified tensor defined by ŵ = ŵ+ − ŵ−.
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This decomposition, however, requires us to be careful in our error bounds when considering the approximation
guarantee of ŵ. In particular, invoking Corollary 5 provides sparse filters ŵ+ and ŵ− that (1± ε) approximate
z+ and z− by ẑ+ and ẑ−, respectively3. However, this does not provide a (1± ε) approximation for z = z+ − z−.
To see this, note that our approximation is defined as ẑ = ẑ+ − ẑ−. Now consider the case that z+, z− > 0 and
ẑ+ = (1 + ε)z+ and z− = (1− ε)z−. This yields an overall error of ε (z+ + z−) > ε|z| for z.

To tackle this complexity, we let ∆(x, a(·)) = (z+(x)+z−(x))/|z(x)| – where z+(x) and z−(x) are implicitly defined
with respect to patch a(·) – denote the complexity measure4 with respect to x ∈ X and patch a(·) ∈ A. For a
particular filter r ∈ [c`], we let ∆̃r(x) = maxa(·)∈A∆(x, a(·)).

Lemma 6. Let x ∼ D, let ∆r ≥ ∆̃r(x) be a constant, and let S ⊆ X be a set of i.i.d. dK ′ log (4η ρ∗/δ)e
Consider invoking Randomized separately with (w, I+) and (−w, I+) each with sample size m =⌈

(6 + 2ε)∆2
r

(∑
j∈I sj

)
K log(8 η/δ)ε−2

⌉
as inputs, where the sum of sensitivities is with respect to I+ or

I−, to obtain the outputs ŵ+ and ŵ−. Then, for any arbitrary patch map a(·) ∈ A, ŵ = ŵ+ − ŵ− satisfies

P
(
∃a(·) ∈ A :

∑
k∈I

ŵkak(x) /∈ (1± ε)
∑
k∈I

wkak(x)
)
≤ δ′

where δ′ = |A|δ/η, nnz(ŵ) ≤ (7 + 2ε)∆2
r SrK log(8 η/δ)ε−2, and Sr is the sum of sensitivities with respect to filter

r.

Note that from a practical standpoint, the value of ∆r is not required for our algorithm since ∆r is only used to
compute the number of samples necessary with respect to ε and δ, but the number of samples is already provided
as input 5. For the next lemma, let Ŵ ` = (ŵ1, . . . , ŵc`) denote the 4-dimensional tensor generated by invoking
Randomized with W `

:,:,:,r as input as in Lemma 6 to obtain ŵr = ŵ+
r − ŵ−r for each filter r ∈ [c`], and let Ẑ`(x)

denote the approximation of Z`(x) ∈ Rs`1×s`2×c` when W `
:,:,:,r is replaced by Ŵ `. The following lemma provides a

layer-wise approximation guarantee for each entry of the output.

Lemma 7. For any ε, δ ∈ (0, 1) and layer ` ∈ [L], the approximate output Ẑ`(x) ∈ Rs`1×s`2×c` with respect to
tensor Ŵ ` satisfies P

(
Ẑ`(x) /∈ (1± ε)Z`(x)

)
≤ δ η`

η , where nnz(Ŵ `) ≤
∑
r∈[c`](7 + 2ε)∆2

r SrK log(8 η/δ)ε−2.

Lemma 7 establishes that the output of any arbitrary layer ` can be (1±ε)-approximated (entry-wise) by replacing
the tensor W ` with the corresponding sparsified tensor Ŵ `. Propagating the error through the L convolutional
layers can be performed by repeatedly applying a variant of Corollary 5 that takes into account the fact that
compressing a layer ` affects the value of the patch maps a(·) ∈ A` in the next layer, i.e., instead of a(·) appearing
in the sum of z(x), we have an approximation â(·).

To deal with this propagation, we define ∆`→ = maxr∈[c`]

∏L
k=` ∆`

r. An appropriate error propagation analysis
implies that for each layer ` and filter r ∈ [c`], if the sampling complexity of Lemma 6 is adjusted to be

m =

32L2(∆`→
r )2K log(8η/δ) ε−2

∑
j∈I

sj

 (1)

then the output of the network is (1± ε) approximated with probability at least 1− δ. This result is formalized
in the theorem below and the details of the error propagation proof can be found in Baykal et al. (2018).
Theorem 4. For given ε, δ ∈ (0, 1) and a set of parameters θ = (W 1, . . . ,WL), SiPP (Alg. 4 in supplementary)
generates a set of compressed parameters θ̂ = (Ŵ 1, . . . , ŴL) such that Pθ̂, x∼D

(
fθ̂(x) ∈ (1± ε)fθ(x)

)
≥ 1− δ, and

nnz(θ̂) = O

 L∑
`=1

∑
r∈[c]`

L2 (∆`→)2 S`rK log(η/δ)

ε2

 ,

where S`r is the sum of sensitivities with respect to filter r ∈ [c`] and layer ` ∈ [L].
3where we ommitted explicit references to x for clarity
4A similar complexity measure was introduced in Munteanu et al. (2018) for logistic regression using coresets.
5If desired, an appropriate value of ∆r in Lemma 6 can be approximated using the subset of points S under a standard

sub-exponentiality assumption on ∆(x, a(·)) Vershynin (2016).
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C Proofs of the Analytical Results in Section 5.3

In the following, we state the proofs of Section 5.3, where we establish that Algorithm 3 (Sparsify) can
be used to provably sparsify a (positive) filter w of a convolutional layer ` ∈ [L]. In particular, recall that
w = W `

:,:,:,r ∈ Rκ`
1×κ

`
2×c

`−1

denotes an arbitrary filter r ∈ [c`], a(·) ∈ A denotes the map from a point x ∼ D to
the corresponding kernel patch, and that I = [κ`1]× [κ`2]× [c`−1] denotes the index set of w. In this context, we
show how ẑ(x) =

∑
k∈I ŵk ak(x), where ŵ is the sparse filter produced by Sparsify, relates to the true filter

output z(x) =
∑
k∈I wk ak(x).

C.1 Proof of Lemma 1

Lemma 1. For δ ∈ (0, 1), invoking Randomized as in Alg. 3 with m ∈ N satisfying m > 8S̃, and a set S ⊆ X
composed of dK ′ log (2 ρ∗/δ)e i.i.d. points drawn from D generates a filter ŵ such that nnz(ŵ) ≤ m and for an
arbitrary patch map a(·) ∈ A and x ∼ D,

P (|ẑ(x)− z(x)| ≥ εmz(x)) ≤ δ,

where ẑ(x) and z(x) are with respect to patch map a(·),

εm =


√√√√ S̃

m

(
S̃

m
+ 6

)
+
S̃

m

 ∈ (0, 1),

S̃ = SK log(4/δ), and S =
∑
j∈I sj.

Proof. Our proof closely follows the proof of Lemma 1 of Baykal et al. (2018). The sampling procedure of Alg. 1
that samples from the multinomial distribution Multinomial(q,m) is equivalent to sequentially constructing the
multiset C consisting of m samples from I where each j ∈ I is sampled with probability qj . Let C = {c1, . . . , cm}
be the subset of weight indices I used to construct ŵ as in Alg. 1. Let a(·) ∈ A be arbitrary, let x be a realization
of x ∼ D, and let

ẑ =
∑
k∈C

ŵk ak(x) =
∑
k∈C

wk ak(x)

mqk

be the approximate intermediate value corresponding to the sparsified tensor ŵ and let

z =
∑
k∈I

wk ak(x).

Now define E to be the (good) event that ẑ ε-approximates z, i.e., ẑ ∈ (1 ± ε)z, We will now show that the
complement of this event, Ec, occurs with sufficiently small probability. Let Z ⊆ supp(D) be the set of well-behaved
points and defined as follows:

Z = {x′ ∈ supp(D) : gj(x
′) ≤ Csj ∀j ∈ I} , (2)

where C = 3K. Let EZ denote the event that x ∈ Z

Conditioned on EZ , event Ec occurs with probability ≤ δ
2 : Let x be a realization of x ∼ D such that

x ∈ Z and let C = {c1, . . . , cm} be m samples from I with respect to distribution q as before. Define m random
variables Tc1 , . . . , Tcm such that for all j ∈ C

Tj =
wj aj(x)

mqj
=
S wj aj(x)

msj
. (3)

For any j ∈ C, we have for the conditional expectation of Tj :

E [Tj | x, EZ ] =
∑
k∈I

wk ak(x)

mqk
· qk =

z

m
,
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where we use the expectation notation E [·] with the understanding that it denotes the conditional expectation
E C |x,EZ [·] and note that conditioning on the event EZ (i.e., the event that x ∈ Z) does not affect the expectation
of Tj . Let T =

∑
j∈C Tj = ẑ denote our approximation and note that by linearity of expectation,

E [T] =
∑
j∈C

E [Tj | x, EZ ] = z.

Thus, ẑ = T is an unbiased estimator of z for any realization a(·) and x; thus, we will henceforth refer to
E [T | a(·), x] as simply z for brevity.

For the remainder of the proof we will assume that z > 0, since otherwise, z = 0 if and only if Tj = 0 for all j ∈ C
almost surely, in which case the lemma follows trivially.

We now proceed with the case where z > 0 and leverage the fact that x ∈ Z (by the conditioning on EZ) to
obtain that for all j ∈ I:

Csj ≥ gj(x)

= max
a′(·)∈A

wj a
′
j(x)∑

k∈I wk a
′
k(x)

≥ wj aj(x)∑
k∈I wk ak(x)

=
wj aj(x)

z
.

Rearranging the inequality above, we obtain

wj aj(x)

sj
≤ C z. (4)

Applying the inequality (4), we bound the (conditional) variance of each Tj , j ∈ C as follows

Var(Tj | x, EZ) ≤ E [T 2
j | x, EZ ]

=
∑
k∈I

(wk ak(x))2

(mqk)2
· qk

≤ S

m2

(∑
k∈I

wk ak(x)

)
C z

=
S C z2

m2
.

where Var(·) is short-hand for VarC |x,EZ (·). Since T is a sum of (conditionally) independent random variables,
we obtain

Var(T | x, EZ) = mVar(Tj | x, EZ) ≤ S C z2

m
. (5)

Now, for each j ∈ C let
T̃j = Tj − E [Tj | x, EZ ] = Tj − z,

and let T̃ =
∑
j∈C T̃j . Note that by the fact that we conditioned on the realization x of x such that x ∈ Z (event

EZ), we obtain by definition of Tj in (3) and the inequality (4):

Tj =
S wj aj(x)

msj
≤ S C z

m
. (6)

Thus, the inequality established in (6) with the fact that S ≥ 1 (by definition) we obtain an upper bound on the
absolute value of the centered random variables:

|T̃j | =
∣∣∣Tj − z

m

∣∣∣ ≤ S C z

m
= M. (7)
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Applying Bernstein’s inequality to both T̃ and −T̃ we have by symmetry and the union bound,

P(Ec | x, EZ) = P (|T − z| ≥ εz | x, EZ)

≤ 2 exp

(
− ε2z2

2Var(T | x, EZ) + 2 ε zM
3

)

≤ 2 exp

(
− ε2z2

2SC z2

m + 2S C εz2

3m

)

= 2 exp

(
− ε2m

SK (6 + 2ε)

)
≤ δ

2
,

where the second inequality follows by our upper bounds on VarC |x,EZ (T | a(·),x) and
∣∣∣T̃j∣∣∣, the second by our

choice of m =
⌈
(6 + 2ε)S K log(4/δ)ε−2

⌉
, and the last equality by definition of C = 3K. This establishes that

for any realization x of x satisfying x ∈ Z, the event Ec occurs with probability at most δ
2 .

Removing the conditioning on EZ : We have by law of total probability

P(E) ≥
∫
x∈Z

P(E | x, EZ) P
x∼D

(x = x) dx

≥
(

1− δ

2

)∫
x∈Z

P
x∼D

(x = x) dx

=

(
1− δ

2

)
P

x∼D
(EZ)

≥
(

1− δ

2

)(
1− δ

2

)
≥ 1− δ,

where the second inequality follows from P(Ec | x, EZ) ≤ δ
2 as was established above, and the third follows by an

application of Lemma 9 with C = 3K of Baykal et al. (2018) and

|S| = dK ′ log (2 ρ∗/δ)e,

which implies that Px∼D(EZ) ≥
(
1− δ

2

)
. This concludes the proof.

C.2 Proof of Lemma 2

Lemma 2. In the context of Lemma 1, invoking Deterministic(I, w,m, (sj)j∈I) generates a filter ŵ such that
for an arbitrary patch map a(·) ∈ A and x ∼ D, P (|ẑ(x)− z(x)| ≥ εmz(x)) ≤ δ

2 , where εm = 3K
∑
j∈(I\Im) sj

and Im is the set of indices of the largest m values in (sj)j∈I .

Proof. We proceed as in the proof of Lemma 1. Let x be a realization of x ∼ D, let Z ⊆ supp(D) be the set
of well-behaved points as defined in (2), and let EZ denote the event that x ∈ Z. We know from the proof of
Lemma 1 that if event EZ occurs, then for all indices j ∈ I, the sensitivity inequality of (4) holds, i.e.,

wj aj(x)

sj
≤ C z ∀j ∈ I,

where z =
∑
k∈I wk ak(x). Rearranging the inequality above, we obtain

wj aj(x) ≤ C z sj ∀j ∈ I. (8)
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Conditioning on the occurrence of event EZ , we bound the relative error as∣∣∣∣∣∣
∑
j∈I

wj aj(x)−
∑
j∈I

ŵj aj(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈I

wj aj(x)−
∑
j∈Im

wj aj(x)

∣∣∣∣∣∣
=
∑
j∈I

wj aj(x)−
∑
j∈Im

wj aj(x)

=
∑

j∈(I\Im)

wj aj(x)

≤ C z
∑

j∈(I\Im)

sj

= εmz

where the first equality follows by definition of ŵ, the second by the fact that wj aj(x) ≥ 0 for all j ∈ I, the
inequality from (8) from above, and last equality by definition of C = 3K and εm.

This implies that if EZ occurs, then ∑
j∈I

ŵj aj(x) > (1− εm)
∑
j∈I

wj aj(x).

Finally, we conclude by using the fact that event EZ occurs with probability at least 1− δ
2 as established in the

proof of Lemma 1.

D Proofs of the Analytical Results in Section B

In the following, we show how we can generalize the results from the previous section to be applicable to all
weights of a neural network. Recall that we proceed by (i) relaxing the assumption that weights are positive, (ii)
showing how the guarantees for one filter apply to any filter in a layer, and (iii) outlining how we can use the
error propagation techniques from Baykal et al. (2017) to extend the results to an entire network.

For sake of simplicity, we proceed in the analysis by solely relying on the sampling-based approach (Randomized)
instead of the hybrid approach (Sparsify) as core sparsification procedure. We establish Corollary 5 to obtain
the required sampling complexity m in terms of (ε, δ), and use the result to generalize the sparsification procedure
to negative weights (Lemma 6) and an entire layer (Lemma 7).

D.1 Proof of Corollary 5

Corollary 5. For any given ε, δ ∈ (0, 1), in the context of Lemma 1, invoking Randomized with sample size

m =
⌈
(6 + 2ε)S K log(4/δ)ε−2

⌉
generates a filter ŵ such that for any arbitrary patch map a(·) ∈ A and x ∼ D,

P

(∑
k∈I

ŵk ak(x) /∈ (1± ε)
∑
k∈I

wk ak(x)

)
≤ δ.

Proof. Rearranging the sampling complexity result of m =
⌈
(6 + 2ε)S K log(εm/δ)ε

−2
⌉
from Lemma 1, dropping

the ceiling function since m is of integral value, and solving for εm yields

εm =

√√√√ S̃

m

(
S̃

m
+ 6

)
+
S̃

m
.

We observe from the expression above that in order to ensure that εm < 1, it suffices to have m > 8S̃, and this
establishes the result.
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D.2 Proof of Lemma 6

Lemma 6. Let x ∼ D, let ∆r ≥ ∆̃r(x) be a constant, and let S ⊆ X be a set of i.i.d. dK ′ log (4η ρ∗/δ)e
Consider invoking Randomized separately with (w, I+) and (−w, I+) each with sample size m =⌈

(6 + 2ε)∆2
r

(∑
j∈I sj

)
K log(8 η/δ)ε−2

⌉
as inputs, where the sum of sensitivities is with respect to I+ or

I−, to obtain the outputs ŵ+ and ŵ−. Then, for any arbitrary patch map a(·) ∈ A, ŵ = ŵ+ − ŵ− satisfies

P
(
∃a(·) ∈ A :

∑
k∈I

ŵkak(x) /∈ (1± ε)
∑
k∈I

wkak(x)
)
≤ δ′

where δ′ = |A|δ/η, nnz(ŵ) ≤ (7 + 2ε)∆2
r SrK log(8 η/δ)ε−2, and Sr is the sum of sensitivities with respect to filter

r.

Proof. Consider an arbitrary patch a(·) ∈ A. Invoking Corollary 5 separately for I+ and I−, we obtain filters
ŵ+ and ŵ− satisfying

P
(
ẑ+(x) /∈ (1± ε∆)z+(x)

)
≤ δ

2η
, and

P
(
ẑ−(x) /∈ (1± ε∆)z−(x)

)
≤ δ

2η
,

where ε∆ = ε/∆r and

ẑ+(x) =
∑
k∈I+

w+ak(x) ≥ 0 and ẑ−(x) =
∑
k∈I−

(−ŵ−) ak(x) ≥ 0

are the approximated values with respect to ŵ+ and ŵ−, and

z+(x) =
∑
k∈I+

w+ak(x) ≥ 0 and z−(x) =
∑
k∈I−

(−w−) ak(x) ≥ 0.

Observe that in light of the above definitions the approximate value is given by ẑ+(x) = ẑ+(x)− ẑ−(x) and the
ground-truth value is given by z(x) = z+(x)− z−(x).

By the triangle inequality and by union bounding over the failure events above, we obtain that with probability
at least 1− δ/η,

|ẑ(x)− z(x)| ≤
∣∣ẑ+(x)− z+(x)

∣∣+
∣∣ẑ−(x)− z−(x)

∣∣
≤ ε∆z

+(x) + ε∆z
−(x)

= ε∆

(
z+(x) + z−(x)

)
≤ ε,

where the last inequality follows by definition of ∆r. Thus, we have for the failure event,

P (ẑ(x) /∈ (1± ε∆)z(x)) ≤ δ

η
.

Since the choice of the patch a(·) ∈ A was arbitrary, the bound above holds for any a(·) ∈ A. Thus, applying the
union bound over all |A| patches establishes the lemma.

D.3 Proof of Lemma 7

Lemma 7. For any ε, δ ∈ (0, 1) and layer ` ∈ [L], the approximate output Ẑ`(x) ∈ Rs`1×s`2×c` with respect to
tensor Ŵ ` satisfies P

(
Ẑ`(x) /∈ (1± ε)Z`(x)

)
≤ δ η`

η , where nnz(Ŵ `) ≤
∑
r∈[c`](7 + 2ε)∆2

r SrK log(8 η/δ)ε−2.

Proof. Recalling that η` = |A| · c`, invoking Lemma 6 for each filter r ∈ [c`], and union bounding over c` failure
events establishes the result.
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E Experimental setup

Training hyper-parameters The LeNet networks were trained on the MNIST data set for 40 epochs with a
batch size of 64 and weight decay of 0.0001. The initial learning rate was set to be 0.01 and decayed to 0.001
after 30 epochs. We trained Resnet20 and WRN16 on the CIFAR10 data set for 182 epochs and 200 epochs,
respectively, with a batch size of 128. We used the conventional data augmentation techniques of random cropping
and flipping, and padding pixels on each side. For Resnet20 and WRN16 the initial learning rate was set to 0.1.
For resnet20, the rate was decayed to 0.01 after 91 epochs and then to 0.001 after 136 epochs from the start; for
WRN16, the learning rate was scaled down by multiplying by it 0.2 every 60 epochs.

Iterative prune + retrain For each trained network with N parameters, we consider a harmonic progression
of sparsity ratios: in the first iteration (i = 1), we first prune the network so that only N/2 of the N original
parameters remain, and then fine-tune by retraining the network with the same hyper-parameters and epochs
as the original training procedure. In the next iteration, we further prune the resulting fine-tuned network so
that it contains N/3 parameters, then fine-tune the network, and repeat the process iteratively. More generally,
at iteration i, our sparsity ratio (with respect to N) is 1/(i+1)p with p = 1. This progression by design leads to
an aggressive pruning scheme in the initial phases – going from 100% to 33% in two iterations –, and then to a
much more gradual and cautious pruning procedure as the problem becomes harder – e.g., it takes roughly 100
iterations to reach 1% sparsity. We adjust the exponent p ∈ (0, 1) depending on the ease of compressibility of the
network.

F Compared Methods

To empirically evaluate the performance of SiPP, we compare against various state-of-the-art algorithm in
network pruning as well as matrix sparsification. In particular, we consider the following algorithms as listed
below.

Singular Value Decomposition (SVD) Each weight matrix W is approximated by its low-rank counterpart
Ŵ of rank r by only maintaining the r largest singular values of its singular value decomposition W = UΣV T .
The size of the resulting sparsification is computed based on the r left- and right-singular vectors that are kept.
For the case of high-dimensional (> 2) weight tensors, we first reshape the tensor into its two-dimensional matrix
counterpart and then use standard SVD for matrices.

Norm-based Sampling (`1+`2/2 or "Norm") A provable sampling-based procedure for matrix sparsification
is given in (Kundu and Drineas, 2014) by defining an importance sampling distribution over each entry (i, j) with
probability

pij =
1

2

(
wij

2

‖W‖2F
+
|wij|
‖W‖`1

)
.

In case of multi-dimensional weight tensors, we again define the probability distribution with respect to its
matrix counterpart. We note that the matrix sparsification introduced by Kundu and Drineas (2014) currently
constitutes one of the state-of-the-art algorithms in data-oblivious matrix sparsification.

Weight Thresholding (WT) (Han et al., 2015) Consider the parameter tuple θ = (W 1, . . . ,WL) of a
neural network and let wt denote the threshold value such that the absolute value of t% of the parameters of θ fall
below the threshold. A weight tensor is then approximated by only keeping weight entries which absolute values is
above wt. The remaining entries are zeroed out. While there is no analysis on the theoretical performance of weight
thresholding, empirical performance suggests that weight thresholding constitutes the current state-of-the-art
approach in network pruning and consistently performs on par with other heuristics for network pruning.

We note that we also investigated the performance of uniform sampling as well as other provable sampling
approaches to matrix sparsification (Achlioptas et al., 2013, Drineas and Zouzias, 2011). Empirically, we found
that the approach presented in (Kundu and Drineas, 2014) is the most competitive comparison to SiPP. For
brevity of exposition, we thus omitted the comparison to other sampling-based approaches in the presentation of
the results.


	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Method
	4.1 Parameter Importance via Sensitivity
	4.2 Randomized and Deterministic Pruning

	5 Analysis
	5.1 Notation
	5.2 Preliminaries
	5.3 Importance Sampling Bounds for Positive Weights
	5.4 Main Theorem
	5.5 Informed Sample Size Allocation

	6 Experiments
	6.1 Experimental Setup
	6.2 Pruning without Retraining
	6.3 Iterative Pruning with Fine-tuning
	6.4 Retaining Important Connections

	7 Conclusion
	A SiPP: Sensitivity-informed Provable Pruning
	B Generalizing to all Weights
	C Proofs of the Analytical Results in Section 5.3
	C.1 Proof of Lemma 1
	C.2 Proof of Lemma 2

	D Proofs of the Analytical Results in Section B
	D.1 Proof of Corollary 5
	D.2 Proof of Lemma 6
	D.3 Proof of Lemma 7

	E Experimental setup
	F Compared Methods

