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Abstract
We develop an online learning algorithm for iden-
tifying unlabeled data points that are most infor-
mative for training (i.e., active learning). By for-
mulating the active learning problem as the pre-
diction with sleeping experts problem, we pro-
vide a framework for identifying informative data
with respect to any given definition of informa-
tiveness. At the core of our work is an efficient
algorithm for sleeping experts that is tailored to
achieve low regret on predictable (easy) instances
while remaining resilient to adversarial ones. This
stands in contrast to state-of-the-art active learn-
ing methods that are overwhelmingly based on
greedy selection, and hence cannot ensure good
performance across varying problem instances.
We present empirical results demonstrating that
our method (i) instantiated with an informative-
ness measure consistently outperforms its greedy
counterpart and (ii) reliably outperforms uniform
sampling on real-world data sets and models.

1. Introduction
Modern neural networks have been highly successful in
a wide variety of applications ranging from Computer
Vision (Feng et al., 2019) to Natural Language Process-
ing (Brown et al., 2020). However, these successes have
come on the back of training large models on massive la-
beled data sets, which may be costly or even infeasible to
obtain in other applications. For instance, applying deep
networks to the task of cancer detection requires medical
images that can only labeled with the expertise of healthcare
professionals, and a single accurate annotation may come at
the cost of a biopsy on a patient (Shen et al., 2019).

Active learning focuses on alleviating the high label-cost
of learning by only querying the labels of points that are
deemed to be the most informative. The notion of infor-
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Figure 1. Evaluations on FashionMNIST (Xiao et al., 2017) with
data augmentation and normalization where we train a new network
from scratch after each data acquisition step. The initial set of
points and the sequence of random network intializations (one
per sample size) are fixed across all algorithms to ensure fairness.
Existing approaches based on greedy selection are not robust and
may perform significantly worse than uniform sampling.

mativeness is not concrete and may be defined in a task-
specific way. Unsurprisingly, prior work in active learning
has primarily focused on devising proxy metrics to appro-
priately quantify the informativeness of each data point in
a tractable way. Examples include proxies based on model
uncertainty (Gal et al., 2017), clustering (Sener & Savarese,
2017), and margin proximity (Ducoffe & Precioso, 2018)
(see (Ren et al., 2020) for a complete survey).

An overwhelming majority of existing methods are based
on greedy selection of the points that are ranked as most
informative with respect to the proxy criterion. Despite the
intuitiveness of this approach, it is known to be highly sen-
sitive to outliers and to occasionally perform significantly
worse than uniform sampling on certain tasks (Ebrahimi
et al., 2020) – as Fig. 1 also depicts. In fact, this short-
coming manifests itself even on reportedly redundant data
sets, such as MNIST, where existing approaches can lead
to models with up to 15% (absolute terms) higher test er-
ror (Muthakana, 2019) than those obtained with uniform
sampling. In sum, the general lack of robustness guarantees
of prior approaches impedes their widespread applicability
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to high-impact deep learning tasks.

In this paper, we propose a low-regret active learning frame-
work that can be applied to any task with any user-specified
notion of informativeness. Our approach deviates from the
standard greedy paradigm and instead formulates the active
learning problem as that of learning with expert advice in an
adversarial environment. We propose and analyze a novel
regret minimization algorithm tailored to the active learning
setting. In this regard, our work aims to advance the devel-
opment of effective and robust active learning strategies that
can be widely applied to modern deep learning tasks.

In this work, we:

1. Show how sequential data acquisition learning can be
viewed as the prediction with sleeping experts problem,

2. Develop an efficient, predictive algorithm for low-
regret active learning and establish bounds on its regret,

3. Demonstrate that our algorithm can be used off-the-
shelf to improve existing greedy heuristics,

4. Evaluate and compare the effectiveness our approach
on modern networks and data sets.

2. Problem Formulation
We consider the setting where we are given a set of n unla-
beled data points P ⊂ Xn from the input space X ⊂ Rd.
We assume that there is an oracle ORACLE that maps each
point x ∈ P to one of k categories. Given a network archi-
tecture and sampling budget b ∈ N+, our goal is to generate
a subset of points S ⊂ P with |S| = b such that training on
{(x,ORACLE(x))x∈S} leads to the most accurate model θ
among all other choices for a subset S ⊂ P of size b.

The iterative variant of acquisition procedure is shown as
Alg. 1, where ACQUIRE is an active learning algorithm that
identifies (by using θt−1) bt unlabeled points to label at each
iteration t ∈ [T ] and TRAIN trains a model initialized with
θt−1 using the labeled set of points. We emphasize that prior
work has overwhelmingly used the scratch option (Line 6,
Alg. 1), which entails discarding the model information
θt−1 from the previous iteration and training a randomly
initialized model from scratch on the set of labeled points
acquired thus far, S.

2.1. Background & Greedy Selection

Consider an informativeness function g : X × Θ → [0, 1]
that quantifies the informativeness of each point x ∈ X
with respect to the model θ ∈ Θ, where Θ is the set of all
possible parameters for the given architecture. An example
of the gain function is the maximum variation ratio (also

called the uncertainty metric) defined as

g(x, θ) = 1−max
i∈[k]

fθ(x)i.

where fθ(x) ∈ Rk is the softmax output of the model θ
given input x. As examples with this metric, the gain g(x, θ)
of point x is 1 if the network is absolutely certain about the
label of x and 1− 1/k in the other extreme case where the
network predicts a uniform distribution.

Algorithm 1 ACTIVELEARNING

Input: Set of points P ⊆ Rd×n, ACQUIRE: an active learning
algorithm for selecting labeled points

1: S ← ∅;
2: θ0 ← Randomly initialized network model;
3: for t ∈ [T ] = {1, . . . , T} do
4: Ct ← ACQUIRE(P \ S, bt, θt−1) {Get new batch of

bt ∈ N+ points to label using the active learning algorithm
ACQUIRE}

5: S ← S ∪ Ct {Add new points}
6: (scratch option) θt−1 ← Randomly initialized network
7: θt ← TRAIN(θt−1, {(x,ORACLE(x))x∈S}) {Obtain new

labels (by querying ORACLE) and train network on the
labeled samples thus far}

8: end for
9: return θT

In the context of Alg. 1, prior work on active learn-
ing (Muthakana, 2019; Geifman & El-Yaniv, 2017; Gal
et al., 2017; Sener & Savarese, 2017) has generally focused
on greedy acquisition strategies (ACQUIRE in Alg. 1) that
rank the remaining unlabeled points x ∈ P \ S by their
informativeness g(x, θt−1) as a function of the model θt−1,
and subsequently pick the top bt points to label.

Why greedy can fail Greedy approaches to data acquisi-
tion have shown promise in certain active learning applica-
tions and tasks (Gal et al., 2017; Sener & Savarese, 2017)),
however, as noted in Sec. 1 – as well as our empirical results
in Sec. 5 – these approaches are highly sensitive to outliers
and at times perform significantly worse than naive uniform
sampling. In fact, Fig. 1 depicts a scenario where various
popular active learning approaches perform significantly
worse than uniform sampling.

To understand why this could be happening, note that at iter-
ation t ∈ [T ] the greedy approach makes a judgment about
the informativeness of each point using only the model θt−1

(i.e., a single snapshot). However, in the deep learning set-
ting where stochastic elements such as random initialization,
stochastic optimization, (randomized) data augmentation,
and dropout are commonly present, θt−1 is itself a random
variable with non-negligible variance. This means that, for
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example, we could get unlucky with our training and obtain
a deceptive model θt−1 that assigns high gains (informa-
tiveness) to points that may not truly be helpful towards
obtaining a highly accurate model at the end of T active
learning iterations.

This problem is perhaps more clearly seen by considering
an adversary that generates the gains at each round in a
way intended to fool us into greedily picking points that are
ultimately not very uninformative in the grand scheme of
things, i.e., with respect to the entire time horizon T . The
reported effectiveness of using ensembles in active learning
further substantiates our conjecture that different models
can in fact significantly disagree about the informativeness
of points, which leads to high-variance estimates, and a
misguided acquisition of points.

2.2. Active Learning as Prediction with Expert Advice

Rather than attempting to model this randomness in the
gains observed, we will assume that the gains can be gen-
erated by a non-oblivious adversary that has knowledge
of our actions in the preceding rounds. This formulation
leads us to the well-studied learning with experts problem
as we outline in this subsection. We note that at the expense
of formulating a seemingly more difficult problem involv-
ing an adversary, we obtain the benefit of generality and
widespread applicability without imposing any assumptions
on how the gains are defined or how they are generated.

Setting We let gt,i denote g(xi, θt−1) (see Alg. 1) in
round t ∈ [T ] where xi is the ith point in P . For ease
of presentation, assume for the time being that bt = 1, i.e.,
we select a single new point at each iteration. Rather than
picking this point deterministically, consider selecting sam-
pling this point with respect to a probability distribution
p ∈ ∆ where ∆ = {p ∈ [0, 1]n :

∑n
j=1 pj = 1} is the

probability simplex. We note that there have been prior
attempts to make greedy approaches robust by sampling
in this very same way (rather than deterministic selection),
however, it was observed that this led to inferior perfor-
mance in practice (Gissin & Shalev-Shwartz, 2019).

To map this problem to the canonical learning with experts
problem, we consider the problem of minimizing the sum
of losses `t,i = 1− gt,i ∈ [0, 1] over the T active learning
iterations. Under this setting a natural first attempt at a
formulation of expected regret is the following

Regret(p1, . . . , pT ) =

T∑
t=1

〈pt, lt〉 −min
p∈∆

T∑
t=1

〈p, lt〉,

where 〈pt, lt〉 = E i∼pt|t−1[lt,i] is the expected loss of our
random choice i ∼ pt conditioned on our past history.

Sleeping Experts However, the previous formulation is
ill-equipped for active learning, since (i) it does not make
sense to compete with a fixed distribution when set of ac-
tions is decreasing over time and (ii) we should not be
picking points that have already been labeled in prior ac-
tive learning iterations. To impose this constraint, we
generalize the prior formulation to one with sleeping ex-
perts (Saha et al., 2020; Luo & Schapire, 2015; Gaillard
et al., 2014; Kleinberg et al., 2010). More concretely, let
It,i ∈ {0, 1} denote whether expert i ∈ [n] is sleeping in
round t. The sleeping expert problem imposes the constraint
that It,i = 0 ⇒ pt,i = 0. For the data acquisition setting,
we define for each i ∈ [n]

It,i = 1{xi not picked in any of the preceding rounds},

and formulate the dynamic active learning regret as

Regret(ρ) =

T∑
t=1

〈pt, lt � It〉 −
T∑
t=1

min
p∈At

〈p, lt � It〉 (1)

where ρ = (p1, . . . , pT ) is the sequence of sampling proba-
bility distributions over T rounds and At is the constrained
probability simplex with respect to It ∈ {0, 1}n

At = {p ∈ ∆ : ∀i ∈ [n] pi = 0 if It,i = 0}.

3. Method
In this section we motivate and present Alg. 2, an efficient
online learning algorithm with instance-dependent guar-
antees that performs well on predictable sequences while
remaining resilient to adversarial ones.

3.1. Background

Algorithms for the prediction with sleeping experts prob-
lem have been extensively studied in literature (Gaillard
et al., 2014; Luo & Schapire, 2015; Saha et al., 2020; Klein-
berg et al., 2010; Shayestehmanesh et al., 2019; Koolen &
Van Erven, 2015). These algorithms enjoy strong guaran-
tees in the adversarial setting; however, they suffer from (i)
sub-optimal regret bounds in predictable settings1 and/or
(ii) exceedingly high computational complexity.

Our approach hinges on the observation that the active learn-
ing setting is not entirely adversarial in practice as discussed
in Sec. 2. More reasonably, we can expect the informative-
ness of the points to resemble a predictable sequence plus
random noise which models the random components (see

1The works of (Gaillard et al., 2014; Koolen & Van Erven,
2015) already do achieve second-order regret bounds for easy
instances, and (Luo & Schapire, 2015) achieves first-order quantile
bounds, however, these approaches cannot exploit predictions, to,
e.g., have constant regret in predictable environments (Orabona,
2019) as other optimistic algorithms can.
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Sec. 2) at each time step. This predictability in the corre-
sponding losses motivates an algorithm that can leverage
predictions about the loss for the next time step to achieve
lower regret when the losses do not vary significantly over
time. This is especially pertinent to the active learning prob-
lem as the informativeness of certain points may not change
too drastically from one acquisition step to the next.

3.2. AdaProd+

To this end, we extend2 the Optimistic Adapt-ML-Prod al-
gorithm (Wei et al., 2017) to the active learning setting
where the number of total experts are unknown in advance3.
Optimistic online learning algorithms are capable of in-
corporating predictions ˆ̀

t+1 for the loss in the next round
`t+1 and guaranteeing regret as a function of the predic-
tions’ accuracy, i.e., as a function of

∑T
t=1 ||`t − ˆ̀

t||∞.
Although we could have attempted to extend other opti-
mistic approaches (Steinhardt & Liang, 2014; Orabona,
2019; Mohri & Yang, 2015; Rakhlin & Sridharan, 2013),
the work of (Wei et al., 2017) ensures – to the best of our
knowledge – the smallest regret in predictable environments
when compared to related approaches.

Our algorithm ADAPROD+ is shown as Alg. 2. Besides re-
laxing Optimistic Adapt-ML-Prod’s requirement of known
number of experts, we draw inspiration from the Bernstein
Online Aggregation algorithm (Wintenberger, 2017) – an
approach that is adaptive to the range of the suffered losses
– in order to improve the empirical effectiveness of our algo-
rithm. Our insight is that our predictions can be leveraged to
improve practical performance by allowing larger learning
rates to be used without sacrificing theoretical guarantees
(Line 10 of Alg. 2). Empirical comparisons with Adapt-ML-
Prod can be found in Sec. C of the supplementary.

3.3. Generating Predictions

Our approach can be used with general predictors ˆ̀
t for

the true loss `t at round t, however, for the purposes of
obtaining bounds in terms of the temporal variation in the
losses, we follow (Wei et al., 2017) and use the most re-
cently observed loss as our prediction for the next round,
i.e., ˆ̀

t = `t−1. However, a subtle point is that our algo-
rithm requires a prediction r̂t ∈ Rn for the instantaneous
regret at round t, i.e., rt = 〈pt, `t〉 − `t. However, us-
ing r̂t = 〈pt−1, ˆ̀

t〉 − ˆ̀
t is not sufficient since the term

(r̂t − rt)2 cannot be upper bounded by an expression of the
form ||`t − ˆ̀

t||2∞ = ‖`t − `t−1‖2∞ (Wei et al., 2017).

2Our extension is inspired by the AdaNormalHedge algo-
rithm (Luo & Schapire, 2015).

3This is because we may not exactly pick bt points due to the
randomness of selection (see Sec. 3.4), and hence the number of
experts seen up to time τ ,

∑τ
t=1

∑n
i=1 It,i, is a random variable.

To achieve this bound, we follow the procedure of (Wei
et al., 2017) as follows. We define the mapping r̂t : α 7→
(α − `t) ∈ [−1, 1]n and perform a binary search over the
update rule in Lines 4-5 of Alg. 2 so that α is such that
α = 〈pt(r̂t(α)), ˆ̀

t〉, where pt(r̂t(α)) is the distribution
obtained when r̂t(α) is used as the optimistic prediction in
Lines 4-5. Note that the existence of such an α follows by
the continuity of the update step with respect to α and the
intermediate value theorem.

Algorithm 2 ADAPROD+

1: For all i ∈ [n], initialize R1,i ← 0; C1,i ← 0;
η0,(1,i) ← 1; w0,(1,i) = 1; r̂1,i = 0;

2: for each round t ∈ [T ] do
3: At ← {i ∈ [n] : It,i = 1} {Set of awake experts}
4: pt,i ←

∑
s∈[t] ηt−1,(s,i)wt−1,(s,i) exp(ηt−1,(s,i) r̂t,i)

for each i ∈ At
5: pt,i ← pt,i/∑j∈At

pt,j for each i ∈ At {Normalize}
6: Adversary reveals `t and we suffer loss ˜̀

t = 〈`t, pt〉
7: For all i ∈ At, rt,i ← ˜̀

t − `t,i and Ct,i ← 0

8: For all i ∈ At and s ∈ [t], set Cs,i ← Cs,i + (r̂t,i − rt,i)2

9: Get prediction r̂t+1 ∈ [−1, 1]n for next round (see Sec. 3.3)
10: For all i ∈ At, set wt−1,(t,i) ← 1, ηt−1,(t,i) ← 2/3, and

for all s ∈ [t], let

ηt,(s,i) ← min

{
ηt−1,(s,i),

2

3(1 + r̂t+1,i)
,

√
2 log(n)

1 + Cs,i

}
,

and perform the two-step update

wt,(s,i) ← exp
(
ηt−1,(s,i) rt,i − η2t−1,(s,i)(rt,i − r̂t,i)2

)
wt,(s,i) ←

(
wt−1,(s,i)wt,(s,i)

)ηt,(s,i)/ηt−1,(s,i)

11: end for

3.4. Back to Active Learning

To unify ADAPROD+ with Alg. 1, observe that we can de-
fine the ACQUIRE function to be a procedure that at time
step t first samples a point by sampling with respect to
probabilities pt, obtains the (user-specified) losses `t with
respect to the model θt−1, and passes them to our algo-
rithm 2 as if they were obtained from the adversary as in
Line 6. This yields an updated probability distribution pt+1

and we repeat the process.

In practice, to generalize this to sampling a batch of bt
points instead, we can instead consider sampling each point
i ∈ [n] with probability p̃t,i = min{btpt,i, 1}. This implies
that the expected number of points sampled is roughly bt if
we assume that the probability pt is not heavily concentrated
on a single point (i.e., btpt,i ≤ 1)4. Note that this is a very

4Alternatively, we could perform a (binary) search over β ≥ bt
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mild assumption in active learning where the number of
unlabeled points n is assumed to be much larger than the
batch size, i.e., n � bt. Incorporating principled tools
from combinatorial online learning (e.g., Component iProd
algorithm of (Koolen & Van Erven, 2015)) in an efficient
way is an avenue for future work.

3.5. Flexibility via Proprietary Loss

We end this section by exemplifying the advantage of
our approach in its flexibility to be applied off-the-shelf
to any definition of (bounded) loss ` ∈ [0, 1]n (i.e., 1 -
informativeness). To this end, we can consider augmenting
the popular uncertainty metric as defined in Sec. 2. To this
end, consider the loss

`t,i = ∆ (ft(xi),Uk)︸ ︷︷ ︸
Prediction certainty

· (1−∆ (ft(xi), ft−1(xi))︸ ︷︷ ︸
"Ensemble" agreement

where ft(xi) ∈ Rk is the softmax output of the model at
iteration t (see Sec. 2), ∆(p, q) is the total variation distance
between distributions p and q ∆(p, q) = maxi |pi − qi| ,
and Uk = (1/k, . . . , 1/k) is the uniform distribution.

Note that this loss conveys information about both the pre-
diction uncertainty of point xi and the ’ensemble’ disagree-
ment across consecutive models in the active learning pro-
cess, and this additional flexibility may lead to significantly
improved results over just the uncertainty metric (see Sec. 5).
We also highlight that this flexibility means that our ap-
proach can always be instantiated with any state-of-the-art
notion of informativeness, and consequently, can scale with
future advances in appropriate notions of informativeness
widely studied in literature.

4. Analysis
In this section, we present the theoretical guarantees of our
algorithm in the learning with sleeping experts setting. Our
main result is an instance-dependent bound on the dynamic
regret – the strongest notion of regret – of our approach in
the active learning setting. We focus on the key ideas in this
section and refer the reader to the Sec. A of the appendix for
the full proofs and a detailed discussion of the generalization
to the batch setting.

The main idea of our analysis is to show that ADAPROD+

(Alg. 2), which itself is an extension of Optimistic Adapt-
ML-Prod (Wei et al., 2017), retains the adaptive regret guar-
antees of the time-varying variant of their algorithm without
having to know the number of experts a priori of (Wei et al.,
2017). Inspired by AdaNormalHedge (Luo & Schapire,
2015), we show that our algorithm can efficiently ensure
adaptive regret. In particular, at time step t ∈ [T ] the run-

so that
∑
imin{βpt,i, 1} = bt assuming that such a β is finite.

ning time per update step (i.e., a full update of the distribu-
tion pt) of Alg. 2 is dominated by running a binary search
over α ∈ [0, 1] as described in 3; each binary step evalua-
tion takes O(tNt) with Nt =

∑n
i=1 It,i ≤ n for all t ∈ [T ]

where the inequality comes from the fact that we select a
new unlabeled data point at time step t. Hence, α can be ap-
proximated within error 1/T 2 in 2 log(T ) iterations, leads
to a total runtime of Õ(tNt) per update step, where we use
Õ(·) to suppress log T and log n factors.

Our second contribution, inspired by the work of (Winten-
berger, 2017), hinges on the simple observation that a vast
amount of prior work in prediction with expert advice relies
on the celebrated Prod inequality log(1 + x) ≥ x− x2 for
x ≥ −1/2 (Cesa-Bianchi & Lugosi, 2006; Hoeven et al.,
2018) to establish second-order regret bounds. The con-
straint that x ≥ −1/2 imposes an upper bound on the learn-
ing rates to be at most 1/4 (Wei et al., 2017), which may lead
to overly-conservative plays in practice (see comparisons
with (Wei et al., 2017) in Sec. B of the appendix). A closer
inspection of the analysis for optimistic algorithms reveals
that we can leverage predictions to get away with larger
learning rates, which leads to significant gains in practice
without compromising any of the theoretical guarantees.

We then combine the adaptive regret bounds inherited
from (Wei et al., 2017) with Theorem 4 of (Luo & Schapire,
2015) to conclude the main regret guarantee of our algorithm
adapted to the setting where we predict the next round’s loss
to be the most recently observed loss, i.e., ˆ̀

t = `t−1.

Theorem 1. The (expected) dynamic regret of AdaProd+

(Alg. 2) as in (1) over T active learning iterations (with
batch size bt = 1) is bounded by

Regret(p1, . . . , pt) ≤ Õ
(√

(1 + V(`1:T ))V+(u∗1:T )

)
,

where u∗1:T = (u∗1, . . . , u
∗
T ) is such that ∀t ∈ [T ], u∗t =

argminu∈At
〈u, `t〉, V(`1:T ) =

∑T
t=1 ‖`t − `t−1‖2∞ , is

the temporal variation in losses, and finally, V+(u∗1:T ) =∑T
t=1

∑n
i=1 max{0, u∗t,i − u∗t−1,i} is the total (positive)

variation in the time-varying optimal distribution.

5. Results
In this section, we present evaluations of our algorithm and
its variants, and compare its performance to popular active
learning strategies on common vision tasks. We refer the in-
terested reader to the supplementary material for additional
experimental results on ImageNet and CIFAR10 as well
as comparisons of ADAPROD+ to existing online learning
algorithms in the active learning setting.
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Figure 2. Evaluations on popular computer vision benchmarks trained on modern convolutional neural networks. Our algorithm is
consistently ensures higher performance than that of uniform sampling and that of competing approaches, with the exception of CIFAR10.
This is in contrast to the highly varying performance of prior (greedy) approaches, which leads to unreliable performance.

5.1. Setup

We compare our active learning algorithm Alg. 2 (labeled
Ours) with the loss described in Sec. 3 (unless otherwise
stated) to Uncertainty: a greedy selection approach based
on the informativeness described in Sec. 2; Entropy: a
greedy approach that defines informativeness by the entropy
of the network’s softmax output; Coreset5: the clustering-
based active learning algorithm of (Sener & Savarese, 2017;
Geifman & El-Yaniv, 2017); and naive Uniform sampling.
The algorithms were implemented in Python and we used
the PyTorch (Paszke et al., 2017) library for our deep learn-
ing evaluations. The full codebase containing the imple-
mented algorithms and code to run and replicate our results
can be found in the supplementary material.

We consider the following popular vision data sets trained
on modern convolutional networks for our evaluations:

1. FashionMNIST(Xiao et al., 2017): 60, 000 grayscale
images of size 28× 28

2. CIFAR10 (Krizhevsky et al., 2009): 50, 000 color im-
ages (32× 32) each belonging to one of 10 classes

3. SVHN (Netzer et al., 2011): 73, 257 32×32 real-world
images of digits taken from Google Street View

4. ImageNet (Deng et al., 2009): more than 1.2 million
images spanning 1000 classes

We used standard convolutional networks for training Fash-
ionMNIST (Xiao et al., 2017) and SVHN (Chen, 2020), and
the CNN5 architecture (Nakkiran et al., 2019) and resid-
ual networks (resnets) (He et al., 2016) for our evaluations

5Following standard methodology (Sinha et al., 2019), we
implemented the greedy version of the algorithm (Gal et al., 2017)
proposed in (Sener & Savarese, 2017).

on CIFAR10 and ImageNet. The networks were trained
with optimized hyper-parameters from literature and with
data augmentation and normalization. The full set of hyper-
parameter specifications and additional details about the
experimental setup are in the supplementary material. All
results are averaged over 10 trials unless otherwise stated.

5.2. Evaluations on Vision Tasks

As our initial experiment, we evaluate and compare the
performance of our approach on benchmark computer vision
applications. Fig. 2 depicts the results of our experiments
on the data sets evaluated with respect to test accuracy and
test loss of the obtained network. For these experiments,
we used the standard methodology (Ren et al., 2020; Gal
et al., 2017) of retraining the network from scratch as the
option in Alg. 1 (i.e., starting from a randomly initialized
network) after each data acquisition step. We note that were
not able to evaluate the Coreset algorithm on ImageNet
due to the extensive memory requirements of the pairwise
distance computations that even the greedy variant requires,
and in a practical sense, this underscores the scalability of
our approach in practice.

Note that for all data sets, our algorithm (shown in red)
consistently outperforms uniform sampling, and in fact, also
leads to reliable and significant improvements over existing
approaches for all data sets, except CIFAR10, where we fare
only slightly worse than greedy strategies (but even here,
we perform roughly 3− 4% better than uniform in terms of
absolute test accuracy). Perhaps most notably, our approach
shines brightest on the most difficult scenario: ImageNet.
On ImageNet, we consistently perform at least 3−6% better
than competitors, especially uniform sampling, as measured
by test accuracy, and orders of magnitude better in terms
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Figure 3. Our evaluations on the FashionMNIST data set with varying data acquisition configurations (OPTION, nstart, b, nend) and
incremental or scratch options. In addition to depicting the test accuracy, we show the test loss for the longest time horizon setting in the
bottom right figure. The performance of competing methods varies significantly across configurations even when the data set is fixed.

of test loss. Our findings support the scalability of our
approach and show promise for its effectiveness on even
larger data sets.

5.3. Robustness Evaluations

Next, we investigate the robustness of the considered ap-
proaches across varying data acquisition configurations eval-
uated on a fixed data set. To this end, we define a data ac-
quisition configuration as the tuple (OPTION, nstart, b, nend)
where OPTION is either SCRATCH or INCREMENTAL in the
context of Alg. 1, nstart is the number of initial points at
the first step of the active learning iteration, b is the fixed
label budget per iteration, and nend is the number of points
at which the active learning process stops. Intuitively, we
expect robust active learning algorithms to be resilient to
changes in the data acquisition configuration and to outper-
form uniform sampling in a configuration-agnostic way.

Fig. 3 shows the results6 of our experiments on Fashion-
MNIST. From the figures, we can see that our approach
performs significantly better than the compared approaches
in terms of both test accuracy and loss in all evaluated config-
urations. On the other hand, the performance of competing
approaches fluctuates wildly. For instance, we can see that
the uncertainty metric in Fig. 3 fares worse than naive uni-

6The full set of figures containing the results of additional
configurations and can be found in the supplementary.

form sampling in (a), but outperforms uniform sampling in
settings (d) and (e); curiously, in (c), it is only better after
an interesting cross-over point towards the end.

This inconsistency and sub-uniform performance is even
more pronounced for the Entropy and Coreset algorithms
that tend to perform significantly worse – up to -7% and
-4% (see (a) and (e) in Fig. 3) absolute test accuracy when
compared to that of our method and uniform sampling, re-
spectively. We postulate that the poor performance of these
competing approaches predominantly stems from their in-
herently greedy acquisition of data points in a setting with
significant randomness as a result of stochastic training and
data augmentation, among other elements. In contrast, our
approach has provably low-regret with respect to the data
acquisition objective, and this provable property of our al-
gorithm translates to consistent performance across varying
configurations and settings.

5.4. Boosting Prior Approaches

Despite the favorable results presented in the previous sub-
sections, a lingering question still remains: to what extent
is our choice of the loss function we formulated in Sec. 3.5
responsible for the effectiveness of our approach? More
generally, can we expect our algorithm to perform well
off-the-shelf – and even lead to improvements over greedy
acquisition – with other choices for the loss?
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Figure 4. The performance of our algorithm when instantiated with informativeness metrics from prior work compared to that of existing
greedy approaches. Despite no changes to the informativeness metric, using ADAPROD+ off-the-shelf leads to improved performance.

To investigate, we implement two variants of our approach,
Ours (Uncertainty) and Ours (Entropy), that are instantiated
with losses defined in terms of uncertainty and entropy,
respectively, and compare them to the corresponding greedy
variants on SVHN and FashionMNIST. We note that the
uncertainty loss corresponds to `t,i = maxj ft(xi)j ∈ [0, 1]
and readily fits in our framework. For the entropy loss, the
application is only slightly more nuanced in that we have
to be careful that losses are bounded in the interval [0, 1].
This can be done by scaling the entropy by its maximum
value log(k) for a classification task with k classes, i.e.,
`t,i = 1− ENTROPY(ft(xi))/ log(k).

The performance of the compared algorithms are shown in
Fig. 4. Note that for both data sets and for both definition of
losses, our approach is significantly better than its greedy
counterpart (compare the red curve to black, and purple to
orange). In other words, applying our approach off-the-shelf
with existing informativeness measures from literature leads
to strict improvements compared to existing work. As seen
from Fig. 4(a), our approach has potential to yield up to a 6%
increase in test accuracy for the same sample size. It is also
worth noting that our approach also leads to consistently
lower test loss in both of the evaluated scenarios.

6. Conclusion
In this paper, we introduced a low-regret active learning
approach based on formulating the problem of data acqui-
sition as that of prediction with experts. Building on our
insights on the existing research gap in active learning, we
introduced an efficient algorithm that is tailored to achieve
low regret on predictable instances while remaining resilient
to adversarial ones. Our empirical evaluations on large-scale
real-world data sets and architectures substantiate the ro-
bustness of our approach and show that it leads to consistent
and significant improvements over existing work.

Perhaps most importantly, our analysis and evaluations sug-
gest that ADAPROD+ can be applied off-the-shelf with ex-
isting informativeness measures to improve upon prior work.
In fact, owing to the generality and applicability of our ap-
proach, we envision that it can be coupled with existing and
future advances in uncertainty or informativeness quantifica-
tion, e.g., (Amini et al., 2019), and applied to active learning.
In this regard, we hope that the work presented here can
contribute to the advancement of robust active learning, so
that reliably effective data acquisition approaches can one
day become an ordinary part of every practitioner’s toolkit,
just like Adam and SGD have for stochastic optimization.
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A. Analysis
In this section, we present the full proofs and technical details of the claims made in Sec. 4. The outline of our analysis
as follows. We first consider the base ADAPROD+ algorithm (shown as Alg. 3), which is nearly the same algorithm as
ADAPROD+, with the exception that it is meant to be a general purpose algorithm for a setting with K experts (K is not
necessarily equal to the number of points n). We show that this algorithm retains the original regret guarantees with respect
to a stationary competitor of Adapt-ML-Prod.

We then consider the thought experiment where we use this standard version of our algorithm with the K = nT sleeping
experts reduction shown in (Wei et al., 2017; Gaillard et al., 2014) to obtain guarantees for adaptive regret. This leads us to
the insight (as in (Luo & Schapire, 2015; Koolen & Van Erven, 2015)) that we do not need to keep track of the full set of K
experts, and can instead keep track of a much smaller (but growing) set of experts in an efficient way without compromising
the theoretical guarantees.

Algorithm 3 BASE ADAPROD+

1: For all i ∈ [K], Ci,0 ← 0; η0,i ← 1; w0,i = 1; r̂1,i = 0;
2: for each round t ∈ [T ] do
3: pt,i ← ηt−1,iwt−1,i exp(ηt−1,i r̂t,i) for each i ∈ [K]

4: pt,i ← pt,i/∑j∈[K] pt,j for each i ∈ [K] {Normalize}
5: Adversary reveals `t and we suffer loss ˜̀

t = 〈`t, pt〉
6: For all i ∈ [K], set rt,i ← ˜̀

t − `t,i
7: For all i ∈ [K], set Ct,i ← Ct−1,i + (r̂t,i − rt,i)2

8: Get prediction r̂t+1 ∈ [−1, 1]K for next round (see Sec. 3.3)
9: For all i ∈ [K], update the learning rate

ηt,i ← min

{
ηt−1,i,

2

3(1 + r̂t+1,i)
,

√
log(K)

1 + Ct,i

}

10: For all i ∈ [K], update the weights

wt,i ←
(
wt−1,i exp

(
ηt−1,irt,i − η2t−1,i(rt,i − r̂t,i)2

))ηt,i/ηt−1,i

11: end for

A.1. Recovering Optimistic Adapt-ML-Prod Guarantees for Alg. 3

We begin by observing that Alg. 3 builds on the standard Optimistic Adapt-ML-Prod algorithm (Wei et al., 2017) by using a
different initialization of the variables (Line 1) and upper bound imposed on the learning rates (as in Alg. 2, and analogously,
in Line 9 of Alg. 3). Hence, the proof is has the same structure as (Wei et al., 2017; Gaillard et al., 2014), and we prove all
of the relevant claims (at times, in slightly different ways) below for clarity and completeness. We proceed with our key
lemma about the properties of the learning rates.

Lemma 2 (Properties of Learning Rates). Assume that the losses are bounded `t ∈ [0, 1]K and that the learning rates ηt,i
are set according to Line 9 of Alg. 3 for all t ∈ [T ] and i ∈ [K], i.e.,

ηt,i ← min

{
ηt−1,i,

2

3(1 + r̂t+1,i)
,

√
log(K)

1 + Ct,i

}
.

Then, all of the following hold for all t+ 1 ∈ [T ] and i ∈ [K]:

1. ηt,i(rt+1,i − r̂t+1,i)− η2
t,i(rt+1,i − r̂t+1,i)

2 ≤ log (1 + ηt,i(rt+1,i − r̂t+1,i)) ,

2. x ≤ xηt,i/ηt+1,i + 1− ηt+1,i

ηt,i
∀x ≥ 0,
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3. ηt,i−ηt+1,i

ηt,i
≤ log(ηt,i/ηt+1,i) .

Proof. For the first claim, observe that the range of admissible values in the original Prod inequality (Cesa-Bianchi &
Lugosi, 2006)

∀x ≥ −1/2 x− x2 ≤ log(1 + x)

can be improved7 to ∀x ≥ −2/3. Now let x = ηt,i(rt+1,i − r̂t+1,i), and observe that since `t ∈ [0, 1]K , we have
rt+1,i = 〈pt+1, `t+1〉 − `t+1 ∈ [−1, 1], and so

x ≥ ηt,i(−1− r̂t+1,i) = −ηt,i(1 + r̂t+1,i)

≥ −2/3,

where in the last inequality we used the upper bound on ηt,i ≤ 2/(3(1 + r̂t+1,i) which holds by definition of the learning
rates.

For the second claim, recall Young’s inequality8 which states that for non-negative a, b, and p ≥ 1,

ab ≤ ap/p+ bp/(p−1)(1− 1/p).

For our application, we set a = x, b = 1, and p = ηt,i/ηt+1,i. Observe that p is indeed greater than 1 since the learning
rates are non-increasing over time (i.e., ηt+1,i ≤ ηt,i for all t and i) by definition. Applying Young’s inequality, we obtain

x ≤ xηt,i/ηt+1,i(ηt+1,i/ηt,i) +
ηt,i − ηt+1,i

ηt,i
,

and the claim follows by the fact that the learning rates are non-increasing.

For the final claim, observe that the derivative of log(x) is 1/x, and so by the mean value theorem we know that there exists
c ∈ [ηt+1,i, ηt,i] such that

log(ηt,i)− log(ηt+1,i)

ηt,i − ηt+1,i
=

1

c
.

Rearranging and using c ≤ max{ηt,i, ηt+1,i} = ηt,i, we obtain

log(ηt,i/ηt+1,i) =
ηt,i − ηt+1,i

c
≥ ηt,i − ηt+1,i

ηt,i
.

Having established our helper lemma, we now proceed to bound the regret with respect to a single expert as in (Wei et al.,
2017; Gaillard et al., 2014). The main statement is given by the lemma below.

Lemma 3 (BASE ADAPROD+ Static Regret Bound). The static regret of Alg. 3 with respect to any expert i ∈ [K],
∑
t rt,i,

is bounded by

O
(

logK + log log T + (
√

logK + log log T )
√

(CT,i)

)
,

where CT,i =
∑
t∈[T ](rt,i − r̂t,i)2.

Proof. Consider Wt =
∑
i∈[K] wt,i to be the sum of potentials at round t. We will first show an upper bound on the

potentials and then show that this sum is an upper bound on the regret of any expert (plus some additional terms). Combining
the upper and lower bounds will lead to the statement of the lemma. To this end, we first show that the sum of potentials
does not increase too much from round t to t+ 1. To do so, we apply (2) from Lemma 2 with x = wt+1,i to obtain for each
wt+1,i

wt+1,i ≤ w
ηt,i/ηt+1,i

t+1,i +
ηt,i − ηt+1,i

ηt,i
.

7By inspection of the root of the function g(x) = log(1+x)−x+x2 closest to x = −1/2, which we know exists since g(−1/2) > 0
while g(−1) < 0.

8This follows by taking logarithms and using the concavity of the logarithm function.
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Now consider the first term on the right hand side above and note that

w
ηt,i/ηt+1,i

t+1,i = wt,i exp
(
ηt,irt+1,i − η2

t,i(rt+1,i − r̂t+1,i)
2
)

by definition; see Line 10

= wt,i exp(ηt,ir̂t+1,i) exp
(
ηt,i(rt+1,i − r̂t+1,i)− η2

t,i(rt+1,i − r̂t+1,i)
2
)

adding and subtracting ηt,ir̂t+1,i

≤ wt,i exp(ηt,ir̂t+1,i) (1 + ηt,i(rt+1,i − r̂t+1,i)) by (1) of Lemma 2
= wt,iηt,i exp(ηt,ir̂t+1,i)rt+1,i + wt,i exp(ηt,ir̂t+1,i) (1− ηt,ir̂t+1,i)︸ ︷︷ ︸

≤exp(−ηt,ir̂t+1,i)

(1 + x ≤ ex for all real x)

≤ wt,iηt,i exp(ηt,ir̂t+1,i)︸ ︷︷ ︸
∝pt+1,i

rt+1,i + wt,i.

As the brace above shows, the first part of the first expression on the right hand side is proportional to pt+1,i by construction
(see Line 3 in Alg. 3). Recalling that rt+1,i = 〈pt+1, `t+1〉−`t+1,i, we have by dividing and multiplying by the normalization
constant, ∑

i∈[K]

wt,iηt,i exp(ηt,ir̂t+1,i)rt+1,i =

∑
i∈[K]

wt,iηt,i exp(ηt,ir̂t+1,i)

 ∑
i∈[K]

pt+1,irt+1,i = 0,

since
∑
i∈[K] pt+1,irt+1,i = 0. This shows that

∑
i∈[K] w

ηt,i/ηt+1,i

t+1,i ≤
∑
i∈[K] wt,i = Wt.

Putting it all together and applying (3) from Lemma 2 to bound ηt,i−ηt+1,i

ηt,i
, we obtain for the sum of potentials:

Wt+1 ≤Wt +
∑
i∈[K]

log(ηt,i/ηt+1,i).

Given that W0 = K, we have that for WT

WT ≤ K +
∑
t∈[T ]

∑
i∈[K]

log(ηt,i/ηt+1,i)

= K +
∑
i∈[K]

∑
t∈[T ]

log(ηt,i/ηt+1,i)

= K +
∑
i∈[K]

log

 ∏
t+1∈[T ]

ηt,i/ηt+1,i


= K +

∑
i∈[K]

log(η0,i/ηT,i)

≤ K
(

1 + log

(
max
i∈[K]

√
1 + CT,i

))
≤ K (1 + log(1 + 4T )/2) .

Now, we establish a lower bound for Wt in terms of the regret with respect to any expert i ∈ [K]. Taking the logarithm and
using the fact that the potentials are always non-negative, we can show via a straightforward induction (as in (Gaillard et al.,
2014)) that

log(WT ) ≥ log(wT,i) ≥ ηT,i
∑
t∈[T ]

(rt,i − ηt−1,i(rt,i − r̂t,i)2).

Rearranging, and using the upper bound on WT from above, we obtain∑
t∈[T ]

rt,i ≤ η−1
T,i log

(
K(1 + log(max

i∈[K]

√
1 + CT,i)

)
+
∑
t∈[T ]

ηt−1,i(rt,i − r̂t,i)2.

For the first term, consider the definition of ηT,i and note that ηT,i ≥ min{1/3, ηT−1,i,
√

log(K)/(1 + CT,i)} since
r̂T+1,i ≤ 1. Now to lower bound ηT,i, consider the claim that ηt,i ≥ min{1/3,

√
log(K)/(1 + CT,i)}. Note that this
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claim holds trivially for the base cases where t = 0 and t = 1 since the learning rates are initialized to 1 and our optimistic
predictions can be at most 1. By induction, we see that if this claim holds at time step t, we have for time step t+ 1

ηt+1,i ≥ min{1/3, ηt,i,
√

log(K)/(1 + Ct+1,i)} ≥ min{1/3, ηt,i,
√

log(K)/(1 + CT,i)}

= min{ηt,i,min{1/3,
√

log(K)/(1 + CT,i)}}

≥ min

{
min{1/3,

√
log(K)/(1 + CT,i)},min{1/3,

√
log(K)/(1 + CT,i)}

}
= min{1/3,

√
log(K)/(1 + CT,i)}.

Hence, we obtain ηT,i ≥ min{1/3, CT,i}, and this implies that (by the same reasoning as in (Gaillard et al., 2014)) that

η−1
T,i log

(
K(1 + log(max

i∈[K]

√
1 + CT,i)

)
≤ O

(
(
√

logK + log log T )
√

1 + CT,i + logK
)
.

Now to bound the last term, we use the definition of ηt−1,i and Lemma 14 of (Gaillard et al., 2014) to obtain∑
t∈[T ]

ηt−1,i(rt,i − r̂t,i)2 ≤ 8
√

logK(1 + CT,i),

where CT,i =
∑
t∈[T ](rt,i − r̂t,i)2 as before and this completes the proof.

A.2. Adaptive Regret

We now turn to establishing adaptive regret bounds via the sleeping experts reduction as in (Wei et al., 2017; Luo & Schapire,
2015) using the reduction of (Gaillard et al., 2014). The overarching goal is to establish an adaptive bound for the regret of
every time interval [t1, t2], t1, t2 ∈ [T ], which is a generalization of the static regret which corresponds to the regret over
the interval [1, T ]. To do so, in the setting of n experts as in the main document, the main idea is to run the base algorithm
(Alg. 3) on K = nT sleeping experts instead9. These experts will be indexed by (t, i) with t ∈ [T ] and i ∈ [n]. Moreover,
at time step t, only experts (s, i) such that s ≤ t, i ∈ [n] will be considered awake, and the remaining will be sleeping. This
will generate a probability distribution p̄t,(s,i) over all K = nT experts (s, i). Using this distribution, at round t we play

pt,i =
∑
s∈[t]

p̄t,(s,i)/Zt,

where Zt =
∑
j∈[K]

∑
s′∈[t] p̄t,(s′,j).

The main idea is to construct losses to give to the base algorithm so that that at any point t ∈ [T ], each expert (s, i) suffers
the interval regret from s to t (which is defined to be 0 if s > t), i.e.,

∑t
τ=1 rτ,(s,i) =

∑t
τ=s rτ,i. To do so, we follow (Wei

et al., 2017) and apply the base algorithm with the modified loss vectors ¯̀
t,(s,i) for expert (s, i) as the original loss if the

expert is awake, i.e., ¯̀
t,(s,i) = `t,i if s ≤ t, and ¯̀

t,(s,i) = 〈pt,i, `t〉. The prediction vector is defined similarly: r̄t,(s,i) = r̂t,i
if s ≤ t, and 0 otherwise.

Note that this construction implies that the regret of the base algorithm with respect to the modified losses and predictions,
i.e., r̄τ,(s,i) = 〈p̄τ,(s,i), ¯̀

τ,(s,i)〉 is equivalent to rτ,i for rounds τ > s where the expert is awake, and 0 otherwise. Thus,

∑
τ∈[t]

r̄τ,(s,i) =

t∑
τ=s

rτ,i,

which means that the regret of expert (s, i) with respect to the base algorithm is precisely regret of the interval [s, t].
Applying Lemma 3 to this reduction above (with K = nT ) immediately recovers the adaptive regret guarantee of Optimisic
Adapt-ML-Prod.

9Note that this notion of sleeping experts is the same as the one we used for dealing with constructing a distribution over only the
unlabeled data points remaining.
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Lemma 4 (Adaptive Regret of BASE ADAPROD+). For any t1 ≤ t2 and i ∈ [n], invoking Alg. 3 with the sleeping experts
reduction described above ensures that

t2∑
t=t1

rt,i ≤ Ô
(

log(K) +
√
Ct2,(t1,i) log(K)

)
,

where Ct2,(t1,i) =
∑t2
t=t1

(rt,i − r̂t,i)2 and Ô suppresses log T factors.

A.3. ADAPROD+ and Dynamic Regret

To put it all together, we relax to requirement of having to update and keep track of K = NT experts and having to know T .
To do so, observe that log(K) ≤ log(nT ) ≤ 2 log(n) since T ≤ n/mint∈[T ] bt ≤ n, where bt ≥ 1 is the number of new
points to label at active learning iteration t. This removes the requirement of having to know T or the future batch sizes
beforehand, meaning that we can set the numerator of ηt,(s,i) to be

√
2 log(n) instead of

√
log(K) (as in 2 in Sec. 3). Next,

observe that in the sleeping experts reduction above, we have

pt,i =
∑
s∈[t]

p̄t,(s,i)/Zt,

where Zt =
∑
j∈[K]

∑
s′∈[t] p̄t,(s′,j). But for s ≤ t, by definition of p̄t,(s,j) and the fact that expert (s, i) is awake, we

have p̄t,(s,j) ∝ ηt−1,(s,j)wt−1,(s,j) exp(ηt−1,(s,j)r̂t,j), and so the normalization constant cancels from the numerator (from
p̄t,(s,j)) and the denominator (from the p̄t,(s′,j) in Zt =

∑
j∈[K]

∑
s′∈[t] p̄t,(s′,j)), leaving us with

pt,i =
∑
s∈[t]

ηt,(s′,j)wt−1,(s′,j) exp(ηt,(s′,j)r̂t,j)

γt
,

where γt =
∑
j∈[K]

∑
s′∈[t] ηt,(s′,j)wt−1,(s′,j) exp(ηt,(s′,j)r̂t,j). Note that this corresponds precisely to the probability

distribution played by ADAPROD+. Further, since ADAPROD+ does not explicitly keep track of the experts that are asleep,
and only updates the potentials Wt,(s,i) of those experts that are awake (for s ≤ t), ADAPROD+ mimics the updates of
the reduction described above involving passing of the modified losses to the base algorithm. Thus, we can conclude that
ADAPROD+ – overlooking the exception of a slight change in the constant of η (which only leads to a factor of 2 increase
in regret) – leads to the same updates and generated probability distributions as the base algorithm for adaptive regret.
This discussion immediately leads to the following lemma for the adaptive regret of our algorithm, very similar to the one
established above except for log n replacing log T terms.

Lemma 5 (Adaptive Regret of ADAPROD+). For any t1 ≤ t2 and i ∈ [n], Alg. 2 ensures that

t2∑
t=t1

rt,i ≤ O
(

log n+ log log n+ (
√

log n+ log log n)
√
Ct2,(t1,i)

)
,

where Ct2,(t1,i) =
∑t2
t=t1

(rt,i − r̂t,i)2.

Finally, applying the reduction from adaptive to dynamic regret (Theorem 4 of (Luo & Schapire, 2015)) and bounding

(rt,i − r̂t,i)2 ≤ 2(〈pt,i, `t,i〉 − 〈pt,i, `t−1,i〉)2 + 2(`t,i − `t−1,i)
2 ≤ 4 ‖`t − `t−1‖2∞

by applying Hölder’s inequality twice, we obtain the theorem established in the main manuscript.

B. Experimental Setup & Additional Evaluations
In this section we (i) describe the experimental setup and detail hyper-parameters used for our experiments and (ii) provide
additional evaluations and comparisons to supplement the results presented in the manuscript. Our code is included in the
supplementary folder10.



Low-Regret Active Learning

FashionCNN SVHNCNN Resnet18 CNN5 (width=128)
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer Adam Adam SGD Adam
epochs 60 60 80 60

epochs incremental 15 15 N/A 15
batch size 128 128 256 128

learning rate (lr) 0.001 0.001 0.1 0.001
lr decay 0.1@(50) 0.1@(50) 0.1@(30, 60) 0.1@(50)

lr decay incremental 0.1@(10) 0.1@(10) N/A 0.1@(10)
momentum N/A N/A 0.9 N/A
Nesterov N/A N/A No N/A

weight decay 0 0 1.0e-4 0

Table 1. We report the hyperparameters used during training the convolutional architectures listed above corresponding to our evaluations
on FashionMNIST, SVHN, CIFAR10, and ImageNet. except for the ones indicated in the lower part of the table. The notation
γ@(n1, n2, . . .) denotes the learning rate schedule where the learning rate is multiplied by the factor γ at epochs n1, n2, . . . (this
corresponds to MultiStepLR in PyTorch).

B.1. Setup

Table 1 depicts the hyperparameters used for training the network architectures used in our experiments. Given an active
learning configuration (OPTION, nstart, b, nend), these parameters describe the training process for each choice of OPTION as
follows:

INCREMENTAL : we start the active learning process by acquiring and labeling nstart points chosen uniformly at random
from the n unlabeled data points, and we train with the corresponding number of epochs and learning rate schedule listed in
Table 1 under rows epochs and lr decay, respectively, to obtain θ1. We then proceed as in Alg. 1 to iteratively acquire b new
labeled points based on the ACQUIRE function and incrementally train a model starting from the model from the previous
iteration, θt−1. This training is done with respect to the number of corresponding epochs and learning rate schedule shown
in Table 1 under epochs incremental and lr decay incremental, respectively.

SCRATCH : the only difference relative to the INCREMENTAL setting is that rather than training the model starting from
θt−1, we train a model from a randomly initialized network at each active learning iteration with respect to the training
parameters under epochs and lr decay in Table 1.

Architectures We used the following convolutional networks on the specified data sets.

1. FashionCNN (Pankajj, 2018) (for FashionMNIST): a network with 2 convolutional layers with batch normalization
and max pooling, 3 fully connected layers, and one dropout layer with p = 0.25 in (Pankajj, 2018). This architecture
achieves over 93% accuracy when trained with the whole data set.

2. SVHNCNN (Chen, 2020) (for SVHN): a small scale convolutional model very similar to FashionCNN except there is
no dropout layer.

3. Resnet18 (He et al., 2016) (for ImageNet): an 18 layer residual network with batch normalization.

4. CNN5 (Nakkiran et al., 2019) (for CIFAR10): a 5-layer convolutional neural network with 4 convolutional layers with
batch normalization. We used the width=128 setting in the context of (Nakkiran et al., 2019).

Settings for experiments in Sec. 5 Prior to presenting additional results and evaluations in the next subsections, we specify
the experiment configurations used for the experiments shown in the main document (Sec. 5). For the corresponding experi-
ments in Fig. 2, we evaluated on the configuration (SCRATCH, 10k, 20k, 110k) for ImageNet, (SCRATCH, 10k, 20k, 110k),

10Our codebase builds on the publicly available codebase of (Liebenwein, 2021).
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(SCRATCH, 250, 250, 3000) for SVHN, (SCRATCH, 3k, 1k, 15k) for CIFAR10, and (SCRATCH, 100, 300, 3000) for Fash-
ionMNIST. For the evaluations in Fig. 4, we used (SCRATCH, 100, 250, 3000) and (SCRATCH, 400, 250, 3000) for Fashion-
MNIST and SVHN, respectively. The models were trained with standard data normalization with respect to the mean and
standard deviation of the entire training set. For ImageNet, we used random cropping to 224× 224 and random horizontal
flips for data augmentation; for the remaining data sets, we used random cropping to 32× 32 (28× 28 for FashionMNIST)
with 4 pixels of padding and random horizontal flips. All presented results were averaged over 10 trials with the exception
of those for ImageNet, where we averaged over 3 trials. We used the proprietary loss metric defined in Sec. 3.5 for all of the
experiments presented in this supplementary, as well as for the vision tasks and FashionMNIST comparisons in the main
manuscript.

B.2. Results on Data-Starved Settings

Figures 5 depicts the results of our additional evaluations on ImageNet and FashionMNIST in the data-starved setting where
we begin with a very small (relatively) set of data points and can only query the labels of a very small set of points at each
time step. For both data sets, our approach outperforms competing ones in the various metrics considered – yielding up to
5% improvements in test accuracy.
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Figure 5. Results for the data-starved configuration (SCRATCH, 5k, 5k, 45k) on ImageNet (first row) and (SCRATCH, 10, 10, 300) on
FashionMNIST (second row). Depicted from left to right are the results with respect to test accuracy, top-5 test accuracy, and test loss.
Shaded region corresponds to values within one standard deviation of the mean.

C. Comparison of Algorithms for Prediction with Expert Advice
In this section, we consider the performance of ADAPROD+ relative to state-of-the-art algorithms for learning with prediction
advice. Since our approach is intended to compete with time-varying competitors (see Sec. A), we compare it to existing
methods that ensure low regret even with respect to this stronger notion of regret. In particular, we compare our approach to
the following algorithms:

1. Optimistic AMLProd (Wei et al., 2017): we implement the (stronger) variant of Optimistic Adapt-ML-Prod that
ensures dynamic regret (outlined at the end of Sec. 3.3 in (Wei et al., 2017)) that we extend in our work. This algorithm
uses the sleeping experts reduction of (Gaillard et al., 2014) and consequently, requires initially creating ñ = nT
sleeping experts and updating them with similar updates as in our algorithm (except the cost of the tth update is Õ(nT )
rather than Õ(Ntt) as in ours). Besides the computational costs, we emphasize that the only true functional difference
between our algorithm and Optimistic AMLProd lies in the thresholding of the learning rates (Line 10 in Alg. 2). In
our approach, we impose the upper bound min{ηt−1,i, 2/(3(1 + r̂t+1,i))} for ηt,i for any t ∈ [T ], whereas (Wei et al.,
2017) imposes the (smaller) bound of 1/4.
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2. AdaNormalHedge(.TV) (Luo & Schapire, 2015): we implement the time-varying version of AdaNormalHedge,
AdaNormalHedge.TV as described in Sec. 5.1 of (Luo & Schapire, 2015). The only slight modification we make in
our setting where we already have a sleeping experts problem is to incorporate the indicator It,i in our predictions
(as suggested by (Luo & Schapire, 2015) in their sleeping experts variant). In other words, we predict11 pt,i ∝
It,i

∑t
τ=1

1
τ2w(R[τ,t−1],i, C[τ,t−1]) rather than the original pt,i ∝

∑t
τ=1

1
τ2w(R[τ,t−1],i, C[τ,t−1]), where R[t1,t1],i =∑t2

t=t1
rt,i and C[t1,t1],i =

∑t2
t=t1
|rt,i| (note that the definition of C is different than ours).

3. Squint(.TV) (Koolen & Van Erven, 2015): Squint is a parameter-free algorithm like AdaNormalHedge in that it
can also be extended to priors over an initially unknown number of experts. Hence, we use the same idea as in
AdaNormalHedge.TV (also see (Luo, 2017)) and apply the extension of the Squint algorithm for adaptive regret.

Experiments We conduct experiments on FashionMNIST and SVHN with SCRATCH and INCREMENTAL options and
with and without data augmentation. The overarching goal of our evaluations is to assess the performance of ADAPROD+

relative to competing algorithms for learning with expert advice in both easy (predictable) and hard (high temporal variation)
environments. To this end, we consider the INCREMENTAL option with no (random) data augmentation to be the most
benign/predictable environment, since the network changes only slightly from one active learning iteration to the next,
and there is less randomness in the training and evaluation of losses. On the other hand, the SCRATCH option with data
augmentation is an instance where losses may have high temporal variation, since the model may change significantly –due
to training a new network from scratch and stochastic data augmentation – from one iteration to the next.
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Figure 6. Evaluation of test loss in the
(INCREMENTAL, 4k, 1k, 20k) configuration on the CIFAR10
dataset with data augmentation.

To get a sense of the general performance of the competing
algorithms, we first evaluate the approaches on CIFAR10 with
data augmentation and normalization. Figs. 6 and 7 depict
the results of our evaluations with respect to the loss, top-1
test accuracy, and top-5 test accuracy. Despite the presence
of stochastic data augmentation and the SCRATCH option, we
found that on the losses did not vary too significantly on CI-
FAR10, which explains the favorable performance of our ap-
proach relative to non-optimistic algorithms. Moreover, these
results in conjunction with the results presented in the main
document (see CIFAR10 results in Fig. 2) shed light into the
fact that the greedy approach indeed performs the best when
the losses do not vary at all.

Varying the Environment Variability Figure 9 shows the
results of our evaluations on the SVHN data set with two
different configurations. In the easy (predictable) instance (left
column), we can see that our approach leads to significant
gains over competing approaches, especially non-optimistic
ones. On the other hand, when there is high temporal variation in the losses, as with the SCRATCH option and data
augmentation, ADAPROD+ remains resilient and fares no worse (and in fact performs slightly better) than the baselines.

As further validation for the reliability of the proposed approach, we evaluate the algorithms on FashionMNIST with
both INCREMENTA and SCRATCH settings (see Fig. 8) with data augmentation. Note that despite the variability of the
environment, ADAPROD+ still has an edge on competing approaches. In sum, the presented results in both benign and
highly varying environments support the claim that ADAPROD+ can achieve the best of both worlds: it is sufficiently
aggressive in picking points deemed to be highly informative on easy instances – which leads to practical gains (as seen
in Figs. 6, 7, and 9) – and at the same time, is cautious enough so that it virtually never fares worse than state-of-the-art,
non-optimistic algorithms with strong regret guarantees.

11We also implemented and evaluated the method with uniform prior over time intervals, i.e., pt,i ∝ It,i
∑t
τ=1 w(R[τ,t−1],i, C[τ,t−1])

(without the prior 1
τ2

), but found that it performed worse than with the prior in practice. The same statement holds for the Squint algorithm.
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Figure 7. Evaluation of the (SCRATCH, 4k, 1k, 20k) configuration on the CIFAR10 dataset with data augmentation. Depicted from left to
right are the results with respect to test accuracy, top-5 test accuracy, and test loss, averaged over 10 trials. Shaded region corresponds to
values within one standard deviation of the mean.

D. Discussion & Future Work
We discuss avenues for future work and potential improvements to our algorithm to conclude the supplementary material.
Note that in this paper we introduced a prediction with expert advice algorithm that was particularly suited to active learning,
where, as our empirical evaluations show, optimistic algorithms fare better on easy instances while remaining resilient to
adversarial ones. Nevertheless, this does not mean that ADAPROD+ is optimal for the active learning setting. In fact, we
hope that this work can lead to the development of better active learning algorithms that improve on ADAPROD+ and the
techniques presented here.

For instance, one immediate improvement would be to extend the algorithm to be truly combinatorial, rather than solving an
expert problem to obtain pt,i and then modifying the obtained pt,i in a way so that the expected number of points obtained is
our budget b, i.e., p̃t,i = min{βtpt,i, 1}, where βt is such that

∑
i∈[n] min{βtpt,i, 1} = b. Unfortunately, our attempts to

bring in more principled tools from combinatorial learning, such as component iProd (Koolen & Van Erven, 2015), were to
no avail because these approaches (from our experience and to the best of our knowledge) require solving for (Bregman)
projections to the b-simplex, among other convex optimization routines that have to be performed per update step. Using
off-the-shelf libraries such as CVX, as suggested by (Koolen & Van Erven, 2015), is computationally prohibitive and
very memory intensive12 when applied to, e.g., ImageNet. It is an open question whether the quasi-projection we perform
significantly affects the order of our regret bounds (under the assumptions of active learning where n� b), and/or whether
more efficient (and implementable) approaches can be utilized to solve the true combinatorial problem more directly.

Other improvements could include relaxing the requirement that losses are in the [0, 1] and to have an algorithm whose regret
scales with the range of the losses could lead to significant practical benefits, or even better, a scale-free algorithm (Orabona,
2019). We conjecture that this may be possible by extending Bernstein Online Aggregration (BOA) (Wintenberger, 2017)
so that it is optimistic. In a similar vein, as evident from the results in Sec. B, AdaNormalHedge performs particularly
well (relative to the other baseline algorithms) in the active learning scenario – despite having worse theoretical guarantees
(second order vs. first order excess loss) than Squint. It would be interesting to investigate whether AdaNormalHedge can
be extended to be optimistic, and whether that would yield improved results in practical settings13.

12We experienced out of memory errors with CVX on even moderately sized data sets.
13The authors of this manuscript originally tried extending the AdaNormalHedge algorithm to be optimistic to no avail. In fact, it is not

even known (Luo & Schapire, 2015) whether AdaNormalHedge can even be extended (or proven) to enjoy the stronger second order
excess loss bound, as Prod and Adapt-ML-Prod algorithms do (Gaillard et al., 2014; Cesa-Bianchi & Lugosi, 2006).
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(a) (INCREMENTAL, 150, 100, 2000)
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(b) (SCRATCH, 150, 100, 2000)

Figure 8. The results of experiments on FashionMNIST trained with data augmentation for the INCREMENTAL (left) and SCRATCH (right)
options. The rows report the top-1 test accuracy, top-5 test accuracy, and test-loss, respectively, for each option. Results were averaged
over 5 trials.
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(a) INCREMENTAL without Data Augmentation
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(b) SCRATCH with Data Augmentation

Figure 9. Evaluations of the (INCREMENTAL, 1000, 100, 4000) and (SCRATCH, 1000, 100, 4000) configurations on the SVHN dataset
when trained with (left column) and without (right column) data augmentation. ADAPROD∗ performs significantly better than competing
approaches when the environment is predictable (left), and yet remains robust to environments with high variation (right), where it remains
a top performer and is roughly tied for first with, or is slightly better than, AdaNormalHedge in all of the metrics shown above. Shaded
region corresponds to values within one standard deviation of the mean.


