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Abstract: Learning competitive behaviors in multi-agent settings such as racing
requires long-term reasoning about potential adversarial interactions. This paper
presents Deep Latent Competition (DLC), a novel reinforcement learning algorithm
that learns competitive visual control policies through self-play in imagination. The
DLC agent imagines multi-agent interaction sequences in the compact latent space
of a learned world model that combines a joint transition function with opponent
viewpoint prediction. Imagined self-play reduces costly sample generation in the
real world, while the latent representation enables planning to scale gracefully with
observation dimensionality. We demonstrate the effectiveness of our algorithm
in learning competitive behaviors on a novel multi-agent racing benchmark that
requires planning from image observations. Code and videos available at https:
//sites.google.com/view/deep-latent-competition.
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Figure 1: Skill acquisition from experience.

Driverless racing is a challenging task
promising to push the limits of autonomous
navigation as it requires robust operation
of the entire driving stack at high speeds.
Racing becomes particularly challenging
when multiple agents simultaneously com-
pete within the same environment. This
requires both, fast processing of observa-
tions and reasoning about opponent behav-
ior. By addressing these challenges, racing
can provide novel insights for the deploy-
ment of autonomous systems. In the con-
text of Multi-Agent Reinforcement Learn-
ing (MARL), racing can benchmark compet-
itiveness as it requires reasoning about the
interplay between ego actions and opponent
behavior. This is particularly challenging
when operating under partial observability
in high-dimensional input spaces and in the
absence of structured priors over environ-
ment behavior.

Recent approaches to autonomous racing
tend to assume access to a nominal environ-
ment model [1, 2, 3]. Some also leverage
game-theoretic frameworks such as iterated
best response [4, 5, 6]. However, in racing
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and other real-world multi-agent settings, relevant behavioral and environmental features may be too
complex to be captured by MPC or purely game-theoretic approaches that assume perfect knowledge
of the state and the system dynamics. MARL provides an alternative framework for modelling rich
agent interactions. Impressive successes have been demonstrated for large-scale competition in
discrete action spaces [7] with access to privileged ground truth information such as categorized
entity lists and multi-layer maps. Continuous control applications of MARL in competitive settings
that only provide image observations are less well-studied. In particular, combining high-dimensional
observations such as images, partial observability of other agents, multi-agent world model learning,
and acquiring complex competitive behaviors through self-play is still a challenge.

We address this research gap by proposing Deep Latent Competition (DLC), a novel model-based
MARL method that operates on raw image inputs. While this method can be applied to a range of
problems, we focus on demonstrating it in the context of two-player racing. Our approach learns
a world model for imagining competitive behavior in latent-space. This allows for training agents
via imagined self-play such that they can predict opponent behavior and incorporate the expected
outcomes of action sequences in their policy selection. We further learn to predict the belief of other
agents purely based on observations from the ego agent’s perspective. We validate this methodology
on a novel multi-agent racing benchmark based on OpenAI Gym [8] that requires the application of
continuous visual control policies. In summary, this work contains the following contributions:

• A novel model-based reinforcement learning algorithm for learning competitive control poli-
cies for multi-agent problems from raw image observations through self-play in latent space

• A multi-agent world model structure that allows for (a) imagination of competing agents’
behavior in a learned latent space and (b) estimation of the beliefs of others from own
observations

• Extensive evaluations in a new multi-agent racing benchmark demonstrating superiority
over approaches that do not reason about other agents in imagination

2 Related Work

Autonomous racing and navigation Most recent approaches considering autonomous racing
assume knowledge of the underlying dynamics model and use machine learning based techniques for
improving said model. This can be employed in conjunction with a variety of control approaches [1, 2,
3, 9]. Game-theoretic methods additionally explicitly model interactions with other agents for decision
making [10, 4, 11, 5, 12, 6, 13]. These approaches usually do not operate on high-dimensional input
spaces and often impose assumptions on the type of interactions. On the other hand, learning-based
end-to-end navigation approaches [14, 15, 16, 17, 18] can operate directly on high-dimensional sensor
data but typically involve no inductive biases for considering interactions.

Multi-agent RL Recently, MARL agents have surpassed human-level performance in many multi-
agent environments including complex board and card games such as Go [19], chess, shogi [20], and
Poker [21, 22]. MARL agents also reached grandmaster-level performance in the real-time strategy
game Star Craft II [7, 23], and showed complex emergent tool use in hide-and-seek [24]. We are
motivated by the success of recent algorithms for continuous control tasks in cooperative, competitive,
and team competition environments [25, 26, 27, 28]. While these agents leveraged privileged
information, such as entity lists, states, and maps, we present an agent that learns competitive
strategies directly from raw image observations. A common thread in MARL are self-play auto-
curricula [29, 30, 31, 32]. In contrast, we gain competitiveness from imagined self-play in a learned
multi-agent latent world model.

Latent imagination in RL Use of neural networks, particularly recurrent neural networks, for
modeling the evolution of the environment allowing for "mental imagination" has been proposed
as early as 1990 [33] and recently revisited in [34]. In a similar spirit, variational inference ap-
proaches have been combined with the linear-quadratic-regulators for learning to control from raw
images [35, 36]. Another line of recent algorithms combines latent (multi-step) imagination with
video prediction [37, 38, 39], achieving state-of-the-art performance on several standard benchmarks.
We draw inspiration from these ideas and generalize the concept of multi-step latent imagination to
multiplayer settings.
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Figure 2: (a) The agent learns to encode observations into separate latent states for each agent based
on reconstruction and reward prediction. The learned transition model propagates all agents’ latent
states jointly. (b) Self-play in imagination: The agent predicts state values and optimizes actions
that maximize future returns by propagating gradients back through imagined game trajectories. The
agent’s competitiveness continuously improves through self-play. (c) The agent estimates the own and
other agents’ current state based on an encoding of own historic observations only and predicts the
actions of the other agent and the own actions to be executed in the environment. True observations
and actions of other agents are not available.

3 Representing Multi-Agent World Models

We define competitive visual control in our racing domain as a MARL problem. A collection of
agents interacts within the environment and learns to optimize their behavior in an effort to maximize
individual cumulative reward. MARL is typically modelled as a Markov game [40, 41, 42], in
which each agent solves a partially observable Markov decision process (POMDP) [43, 44, 45]. In
the following, we first introduce the general problem definition, outline our approach to imagined
self-play and introduce our representation learning approach.

Problem formulation of competitive MARL We define the POMDP of agent i ∈ {1, . . . , n}
as the tuple M i = 〈S,Ai, T,Ωi, Oi, Ri〉, where S denotes the set of environment states, Ai the
continuous action set, and T : S × A1 × · · · × An → Π(S) the corresponding transition function
with associated probability distribution Π(·). For each agent i, we furthermore define a reward
function Ri : S ×Ai → R, as well as an observation set Ωi with corresponding observation function
Oi : S × Ai → Π(Ωi). In the following, we consider a homogeneous set of agents with identical
action and observation spaces as well as reward functions, such that Xi = X for X = {A,Ω, O,R}.
We do not assume prior knowledge about the environment. Thus, the nominal reward function R,
state transition function T , and observation function O are unknown. Let qφ(ait|oi≤t, ai<t) denote the
policy of agent i, conditioned only on its own observation-action history, and define the associated
expected return over a race of duration T to be E

∑T
t=1 r

i
t. The objective is then to develop an agent

that maximizes the expected return in the absence of prior knowledge about nominal environment and
opponent behavior. This defines an extensive-form game as the agents are competing for reward over
multiple timesteps, while only receiving instantaneous environment feedback via high-dimensional
observations oit and scalar rewards rit.

Learning through imagined self-play Model-based reinforcement learning consists of the tasks
of (a) model learning, (b) behavior optimization, and (c) environment interaction. Model-based
MARL extends model learning to include predictions of other agents’ behavior, while behavior
optimization needs to account for competitive fitness. The training proceeds centralized. While the
learning algorithm has access to the observation-action histories of all agents, the deployment is
decentralized, providing each agent only with their individual observation-action history. As detailed
in Figure 2, our algorithm iteratively executes the following:

• Learning a world model consisting of the joint dynamics and reward function based on previous
experience of all agents, see Figure 2a. Learning to predict how the world evolves conditioned
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on own and expected opponent actions enables each agent to imagine the outcome of games
without requiring additional real-world experience.
• Learning action and value function models through policy iteration on imagined model rollouts.

The agents interact with their adversaries through imagined self-play and acquire increasingly
competitive behaviors without the necessity for execution in the real world, see Figure 2b.
• Competing in the real world to collect novel experience and judge the performance of the current

behavior. Each agent only has access to their own observation-action history and performance
indirectly depends on how well the states of opponents are being estimated, see Figure 2c.

Representing multi-agent world models Leveraging a multi-agent world model accelerates learn-
ing through imagined self-play. The agent optimizes its behavior by simulating interactions with its
opponents in the environment without execution in the real world. In contrast to single-agent world
models [35, 36, 46], this requires explicit representation of the state and action of each agent, as well
as a mechanism for an agent to predict behavior of another agent. In the following, we will consider a
two-player game (n = 2) and extend the representation model formulation provided in [38] to yield

Representation model: pθ
(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1, o1t , o2t

)
Transition model: qθ

(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1

)
Encoder model: qθ

(
zit, z̃

¬i
t

∣∣ oit)
Observation model: qθ

(
oit|sit

)
Reward model: qθ

(
rit|sit

)
(1)

where p and q denote distributions in latent space, with θ as their joint parameterization. The rep-
resentation model encodes observations (o1t , o

2
t ) into Markovian model states (s1t , s

2
t ) [38], which

are propagated under a joint transition function to predict future model states (s1t+1, s
2
t+1). We

explicitly provide the underlying encoder model to emphasize that each agent not only learns
an embedding corresponding to its own viewpoint, zit, but additionally learns to predict embed-
dings of the opponent, z̃¬it . This is crucial during deployment, as ground truth observations and
actions of opponents are not available. Instead, we leverage our predicted embeddings z̃¬it in con-
junction with an action model qφ

(
a¬it |s¬it

)
and employ a slightly modified representation model

pθ
(
sit, s

¬i
t |sit−1, s¬it−1, ait−1, a¬it−1, oit

)
that is only conditioned on the observation of the ego agent,

o1t . The encoder model is part of the representation model and embeds observations into embedding
states based on which model states are then generated. For each agent, we furthermore define an
individual observation model qθ

(
oit|sit

)
and reward model qθ

(
rit|sit

)
. The underlying architectures

follow [46, 38], where the transition model is represented by a recurrent state space model (RSSM),
the encoder and observation models by a convolutional neural network (CNN) and transposed CNN,
respectively, and the reward model by a dense neural network. Training of these models then proceeds
centralized, such that the learning algorithm is given access to the interaction histories of each agent.

4 Learning to Compete by Imagined Self-Play

Our proposed algorithm learns a world model from ground truth data, based on which behavior is
refined through imagined self-play. In the following, we introduce the objectives for the two stages.

Representation learning The representation learning objective combines image reconstruction
with reward prediction in order to discover latent spaces that not only offer compact representations
of environment states but further facilitate prediction of associated trajectory performance. Because
agents are actively competing for reward, their states are propagated jointly through the transition
model with each agent learning to predict relevant opponent states. The observation model then not
only provides reconstruction signals for the ego perspective via the true ego state sit, but also for the
opponent perspective via the predicted opponent state s̃¬it . Following [38], the models introduced in
Eq. (1) are optimized to maximize a reformulation of their variational lower bound objective:
JM,ŝ = ED(

∑
t(JO,t + JR,t + JD,t))

JO,t = ln q(o1t |ŝ1t ) + ln q(o2t |ŝ2t )
JR,t = ln q(r1t |ŝ1t ) + ln q(r2t |ŝ2t )
JD,t = −β KL(p(ŝ1t , ŝ

2
t |ŝ1t−1, ŝ2t−1, a1t−1, a2t−1, o1t , o2t ) ‖ q(ŝ1t , ŝ2t |ŝ1t−1, ŝ2t−1, a1t−1, a2t−1)),

(2)
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where the general model state ŝ may either originate from ground truth embeddings s or their predic-
tions s̃. In practice, we optimize a linear combination of JM,ŝ with ŝ = {(s1t , s2t ), (s1t , s̃2t ), (s̃1t , s2t )}.
This enables learning of latent representations conducive to solving the task via the ground truth
embeddings, while constraining predicted embeddings to sensible representations within that space.

Behavior learning The behavior learning objective optimizes for competitive fitness by maximizing
the expected return of the action model qφ

(
ait|sit

)
over a T -step race. The agent can imagine outcomes

of potential interaction sequences by leveraging the learned transition model, therefore bypassing
execution in the real world through imagined self-play. Generating entire race sequences can be
computationally prohibitive and we follow [38] in complementing finite horizon model rollouts with
predictions from a value model vψ

(
sit
)

in order to approximate returns corresponding to an extensive
form race. The action and value model are then trained jointly using policy iteration on the objectives

maxφ Eqθ,qφ
(∑t+H

τ=t Vλ(sτ )
)
, minψ Eqθ,qφ

(∑t+H
τ=t ‖vψ(sτ )− Vλ(sτ )‖2

)
, (3)

where Vλ(sτ ) represents an exponentially recency-weighted average of the k-step value estimates
V kN (sτ ) to stabilize the learning [45]. We provide the corresponding value function definitions as

Vλ(sτ ) = (1− λ)
∑H−1
n=1 λ

n−1V nN (sτ ) + λH−1V HN (sτ ),

V kN (sτ ) = Eqθ,qφ
(∑h−1

n=τ γ
n−τrn + γh−τvψ(sh)

)
,

(4)

where h = min(τ + k, t+H). This process leverages imagined trajectories {
(
s1τ , s

2
τ , a

1
τ , a

2
τ

)
}t+Hτ=t

over a horizon ofH starting from each timestep t within the sampled batch sequence, where opponent
behavior is estimated by querying the action model with predicted latent viewpoints as qφ

(
a¬it |s̃¬it

)
.

The resulting algorithm optimizes policies by back-propagating analytic value gradients of imagined
self-play trajectories through the learned multi-agent world model.

Deep latent competition The resulting algorithm is provided as pseudocode in Algorithm 1. It
runs for K episodes and proceeds in two phases: during the online phase, data is collected from
a T -step race with each agent only having access to their respective observations and relying on
predicted opponent behavior. During the offline phase, representation learning and policy iteration
propagate information into the world model and the action model based on the interaction histories
of all agents. To this end, batch sequences of length L are sampled from replay memory D to serve
as targets for representation learning. The behavior is then refined in simulation based on rollout
trajectories of length H starting from the ground truth samples which are used in generating the value
estimates according to Eq. 4. Here, we set the underlying parameters to T = 1000, L = 50 and
H = 15. All models are then optimized on the previous objectives with the Adam optimizer [47].

Algorithm 1: Deep Latent Competition (DLC)
1 Initialize : model parameters {θ, ψ, φ} randomly; memory D with 5 random episodes
2 for episode k ← 1 to K do
3 for timestep t← 1 to T do
4 Observe o1t and predict embeddings z1t , z̃

2
t ∼ qθ

(
z1t , z̃

2
t |o1t

)
5 Propagate states s1t , s̃

2
t ∼ pθ

(
s1t , s̃

2
t |s1t−1, s̃2t−1, a1t−1, ã2t−1, z1t , z̃2t

)
6 Generate action a1t ∼ qφ

(
a1t |s1t

)
, predicted response ã2t ∼ qφ

(
ã2t |s̃2t

)
7 Execute a1t in the environment
8 Add episode transitions {

(
o1t , o

2
t , a

1
t , a

2
t , r

1
t , r

2
t

)
}Tt=1 to memory D

9 for trainstep s← 1 to S do
10 Sample batch of sequences {

(
o1t , o

2
t , a

1
t , a

2
t , r

1
t , r

2
t

)
}b+Lt=b ∼ D

11 Use the encoder model to predict embeddings z1t , z̃
1
t , z

2
t , z̃

2
t

12 Use the representation model to predict states s1t , s̃
1
t , s

2
t , s̃

2
t

13 Update θ via representation learning on {
(
s1t , s

2
t

)
,
(
s1t , s̃

2
t

)
,
(
s̃1t , s

2
t

)
}

14 Compute value estimates V 1
λ

(
s1τ
)
, V 2
λ

(
s2τ
)
← rollout(s1t , s

2
t , H)

15 Update φ and ψ based on Eq. (3) for all targets {V 1
λ

(
s1τ
)
, V 2
λ

(
s2τ
)
}

Online

Offline
Model
Update

Policy
Update

5



A

C D

B

Figure 3: A: Win ratio of all agents in a round-robin tournament. B: Agents with joint and joint +
observer transition compete directly against an agent with individual transition function. C: Average
score of all agents in a round-robin tournament. D: Single agent racing performance disentangles
general skill learning from learning to compete through interaction.

5 Latent Racing Experiments

We demonstrate the ability of DLC to learn competitive visual control policies in a novel multi-agent
racing environment, and compare performance against baselines to highlight the importance of both
the joint transition model and the learned observer. We further highlight the learned representation
model’s capability of predicting opponent viewpoints from ego observations.

Racing environment We propose MultiCarRacing-v0, a novel multi-agent racing environ-
ment for learning competitive visual control policies1. The environment extends the Gym task
CarRacing-v0 [8] and provides each agent with top-down 96x96 pixel image observations from
their ego perspective based on which continuous control inputs need to be selected. The viewpoint
is motivated by recent results in the context of driving [48, 49, 50] and holds the promise of future
deployment on physical platforms. The environment allows for differentiating between skillful and
competitive driving. While the former is the basis for high-performance racing, learning to beat a skill-
ful opponent is a far greater challenge. Interactions between agents are sparse but information-rich:
only when agents collide, push, or block each other do they directly impact each others state.

Dynamics and rewards The vehicles in the environment exhibit slip and collision dynamics.
Breaking or accelerating too hard induces skidding and in combination with steering causes substantial
understeering or oversteering (drifting). Similarly, moving off the track lowers available friction.
Collision dynamics allow for elaborate interaction strategies during the race: pushing other agents off
the track, blocking overtaking attempts, or turning an opponent sideways via a PIT maneuver. We
show examples in Figure 1. The reward mapping follows CarRacing-v0, in that each agent incurs a
loss of −0.1 per timestep and receives a reward for each visited tile along the track. We incentivize
competition by discounting rewards based on visitation order: the first agent to visit a track tile is
rewarded with +1000/N , while the second agent receives +500/N (on an N -tile track).

1Code available at https://github.com/igilitschenski/multi_car_racing
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Figure 4: Closed loop prediction: A: Agent 1 observes the opponent and is therefore able to
reconstruct both views. B: 1 is unable to observe 2 and reconstructs their view with high uncertainty.

Benchmarking performance The algorithm presented in this work, DLC, learns a multi-agent
world model that enables imagined self-play by combining the underlying transition function with
an observer capable of predicting opponent latent states. We refer to this method as joint transition
+ observer and compare performance against two baselines. The first is joint transition, which
propagates ground truth latent states of both agents and allows for assessing performance of the
observer. The second is individual transition, which propagates ground truth latent states individually
and highlights the added value of a joint transition model. Each method is trained on 500 races. We
evaluate the resulting performance in a round-robin tournament of 100 races for each pairing (300
races per tournament) at multiple stages of training progress. We repeat this for 5 random seeds.

Figure 3A shows the resulting win-ratio and Figure 3B the average score for the round-robin
tournament. The representation learning problem for individual transition is easier as the learned
transition function does not need to disentangle how the states and actions of both agents affect the
transition. Therefore, the individual transition baseline starts off strong. However, after 200 races
both joint transition methods have learned to compete more effectively through imagined self-play.
The individual transition baseline can not leverage this effect, as agent actions do not affect opponents
states during imagined rollouts and self-play may only occur in the real world. As visible in Figure 3C,
after 500 races both joint transition approaches win 70-80% of races against the individual transition
baseline. Furthermore, both joint transition methods perform similarly, suggesting that the learned
observer is capable of predicting opponent latent states in a way that is sufficient in order to induce
learning of competitive behaviors.

The single agent racing performance, see Figure 3D, further allows us to disentangle general skill
learning from learning to compete. It confirms that the individual transition baseline is able to
acquire general racing skills faster. Similarly, the joint transition methods do not outperform the
individual transition baseline in the single agent racing case, such that their performance increase for
the multi-agent setting in Figure 3A can be explained by their increased ability to compete.

Predicting the opponents latent state from ego observations Given an agent’s own history of
observations and controls, we can estimate the compact latent state and it’s associated reconstruction
to visualize the representation model’s understanding of the world. More interestingly, we can create
a reconstruction of the predicted opponent’s latent state to visualize how well the agent can infer the
opponent view. Given a predicted opponent state we can predict their actions based on the learned
policy. Figure 4 provides two scenarios with reconstructions based only on observations of agent 1.

In Figure 4A, the opponent is within the field of view of agent 1. The reconstructions are focused and
close to the ground truth for both the ego and opponent viewpoints, indicating that the latent state is
accurate and well understood. In Figure 4B, agent 1 never observes its opponent and is unable to
accurately predict their view. However, instead of predicting only noise, agent 2 is imagined to drive
on a straight road with the possibility of an upcoming turn. This is a sensible prediction given that
agent 2 is currently not observable and in turn will not immediately affect the motion plan of agent 1.
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Figure 5: Open loop prediction: Agent 1 (red) receives 5 observation frames as context and predicts
the own view and the view of agent 2 (blue). We employ the learned dynamics to forward propagate
25 additional timesteps into the future without any further observations.

Imagining interaction sequences To facilitate efficient self-play in a learned world model, we
require all agent states to be jointly propagated in a consistent manner. In Figure 5, we provide 5
observations of agent 1 as context and investigate the model’s ability to predict forward in time for 25
additional timesteps. Similarly to Figure 4, we exclude ground-truth observations of agent 2. While
actions of agent 1 are available for the full horizon, the learned policy predicts the actions of agent 2.

Referring to the context frames, we observe the benefit of recursively estimating states in agent 1’s
reconstruction of agent 2’s viewpoint: while the reconstruction has high uncertainty in the first frame,
accuracy improves with every new observation. Agent 1’s reconstruction of their ego view is detailed
from the start with the blue agent remaining blurry. Moving beyond the context frames, the predicted
views quickly diverge from the ground truth. This is expected as the agent is unable to see beyond
the first turn. In the following imagination, the blue agent overtakes the red agent by forcing them off
the track (Figure 5 prediction of agent 1, timestep 15). This is reasonable, as the blue agent leaves the
left turn on the inside with an opportunity to push the red agent off the road. The imagined sequences
feature detailed predictions of the track, including markings on an upcoming left turn (timestep 25).

Most importantly, the predictions of both agents remain consistent. The two agents’ relative positions
with each other and the track are in correspondence along the full horizon. Likewise, the predicted
characteristics of a track including curbs and a left turn are consistent between both agents’ predicted
views (timestep 25). Consistency is crucial as it allows to learn from imagined self-play in a world
model. If the two predictions were to diverge, the impact of the ego actions on another agent’s
behavior could not be estimated. The outcome of the imagined games would be uncertain. The joint
transition model helps keeping predictions consistent, as it allows for information exchange between
both agents’ latent states during forward propagation.

6 Conclusion

We present Deep Latent Competition (DLC), a novel reinforcement learning algorithm that learns
competitive visual control policies through self-play in imagination. The DLC agent can imagine
interaction sequences in the compact latent space based on a multi-agent world model that combines
a joint transition function with opponent viewpoint prediction. The behavior is then optimized by
back-propagating the analytic value gradients of these imagined game trajectories through the learned
world model. Experiments in a novel continuous visual control racing environment demonstrate that
the DLC agent learns to make consistent multi-agent forward predictions. Optimizing competitive
behaviors through imagined self-play based on these joint predictions yields an agent that performs
superior to an agent that propagates ground truth observations separately. In the future, we aim to
deploy the DLC agent on hardware platforms to yield competitive racecar driving in the real world.
Extending the framework to include more complex game-theoretic considerations in the forward
predictions offers another intriguing avenue for future work.
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[37] Ł. Kaiser, M. Babaeizadeh, P. Miłos, B. Osiński, R. H. Campbell, K. Czechowski, D. Erhan, C. Finn,
P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi, G. Tucker, and H. Michalewski. Model Based
Reinforcement Learning for Atari. In International Conference on Learning Representations (ICLR), 2020.
2

10



[38] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to Control: Learning Behaviors by Latent Imagination.
In Proceedings of the International Conference on Learning Representations (ICLR), 2020. 2, 3, 3, 4, 4, A,
A, A, A

[39] T. Seyde, W. Schwarting, S. Karaman, and D. Rus. Learning to plan optimistically: Uncertainty-guided
deep exploration via latent model ensembles. arXiv preprint:2010.14641, 2020. 2

[40] L. S. Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095–1100,
1953. 3

[41] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 1994. 3

[42] P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research, 24:49–79, 2005. 3

[43] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99–134, 1998. 3

[44] M. Hauskrecht. Value-function approximations for partially observable markov decision processes. Journal
of artificial intelligence research, 13:33–94, 2000. 3

[45] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018. 3, 4

[46] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics
for planning from pixels. arXiv preprint arXiv:1811.04551, 2018. 3, 3, A

[47] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint:1412.6980, 2014. 4,
A

[48] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. Aggressive Deep Driving:
Combining Convolutional Neural Networks and Model Predictive Control. In Conference on Robot
Learning (CoRL), 2017. 5

[49] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by Cheating. In Conference on Robot Learning
(CoRL), 2020. 5

[50] K. Mani, S. Daga, S. Garg, S. S. Narasimhan, M. Krishna, and K. M. Jatavallabhula. MonoLayout: Amodal
scene layout from a single image. In Winter Conference on Applications of Computer Vision (WACV),
2020. 5

[51] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International Conference on Machine Learning, pages
1861–1870, 2018. A

11



A Network Architectures

Layer Type Input (dimensions) Output (dimensions) Additional Parameters
Transition model (imagine 1-step)

Dense sτ−1,s (60), aτ−1 (6) fc1t,i (600) a=ELU

GRU fc1t,i (600), sτ−1,d (400) rsτ (400), sτ,d (400) a=tanh

Dense rsτ (400) fc2t,i (600) a=ELU

Dense fc2t,i (600) µpriorτ,s (60), σpriorτ,s (60) a=None

Transition model (observe 1-step)

Dense sτ,d (400), zτ (2048) fc1t,o (600) a=ELU

Dense fc1t,o (600) µpostτ,s (60), σpostτ,s (60) a=None

Encoder model

Conv2D obs (96, 96, 3) cv1 (31, 31, 32) a=ReLU, s=3, k=(4,4)

Conv2D cv1 (31, 31, 32) cv2 (14, 14, 64) a=ReLU, s=2, k=(4,4)

Conv2D cv2 (14, 14, 64) cv3 (6, 6, 128) a=ReLU, s=2, k=(4,4)

Conv2D cv3 (6, 6, 128) cv4 (2, 2, 256) a=ReLU, s=2, k=(4,4)
Observation model

Dense siτ,d (200), siτ,s (30) fc1o (1, 1, 1024) a=None

Deconv2D fc1o (1, 1, 1024) dc1 (5, 5, 128) a=ReLU, s=2, k=(5,5)

Deconv2D dc1 (5, 5, 128) dc2 (13, 13, 64) a=ReLU, s=2, k=(5,5)

Deconv2D dc2 (13, 13, 64) dc3 (31, 31, 32) a=ReLU, s=2, k=(6,6), p=1

Deconv2D dc3 (31, 31, 32) dc4 (96, 96, 3) a=ReLU, s=3, k=(6,6)
Reward model

Dense siτ,d (200), siτ,s (30) fc1r (400) a=ELU

Dense × 1 fc{1}r (400) fc{2}r (400) a=ELU

Dense fc2r (400) fc3r (1) a=ELU
Value model

Dense siτ,d (200), siτ,s (30) fc1v (400) a=ELU

Dense × 2 fc{1,2}v (400) fc{2,3}v (400) a=ELU

Dense fc3v (400) fc4v (1) a=ELU
Action model

Dense siτ,d (200), siτ,s (30) fc1a (400) a=ELU

Dense × 3 fc{1,2,3}a (400) fc{2,3,4}a (400) a=ELU

Dense fc4a (400) µa (3), σa (3) a=ELU

Table 1: General network architectures of the underlying models. The transition model is joint in our
implementation and the associated input and output variables correspond to joint representations (e.g.
the previous action aτ−1 (6) can be interpreted as aτ−1 (2×3)). We note that repeated layers have
been condensed with Dense × i referring to application of the same dense layer architecture i times.
The employed parameter abbreviations are referring to: a=activation, k=kernel, p=padding, s=stride.

Based on the general network architectures provided in Table 1, we comment on how the two parts of
the transition model integrate with each other and provide further details on each of the models.
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Transition model The joint transition model follows the recurrent state space model (RSSM)
architecture presented in [46, 38]. The RSSM is extended to the multi-agent setting and propagates
joint model states consisting of a deterministic and a stochastic component, respectively denoted
by st,d and st,s at time t. The stochastic component st,s is implemented via a diagonal Gaussian
distribution and its derivation is provided in the next section. The transition model then predicts priors
for the associated mean and standard deviation based on the previous model state and applied action
(imagine 1-step). In the presence of observations, prior estimates can be updated to posterior estimates
(observe 1-step). The transition model may then initialize its states by propagating posteriors based
on a context sequence (imagine 1-step and observe 1-step) from which interactions can be imagined
by propagating prior estimates (imagine 1-step).

Encoder model The encoder parameterization follows the architectural choices presented in [34],
where we adapt the convolutional layers to match the dimensionality of our observations. The agent
leverages two encoders in parallel, one for generating latent vectors of the ego perspective and one
for predicting latent vectors of the opponent perspective. Inputs are 96×96 RGB image observations.

Observation model The observation model follows the decoder architecture presented in [34],
where we adapt the transposed convolutional layers to match the dimensionality of our observations.
The image observations of agent i are reconstructed from the associated model states siτ,d and siτ,s.

Reward and value model Rewards and values of agent i are both predicted as scalar values from
fully-connected networks that operate on the associated model states siτ,d and siτ,s, similar to [38].

Action model The action model follows [38], where the predicted mean µa is rescaled and passed
through a tanh to allow for saturated action distributions. It is combined with a softplus standard
deviation based on σa and the resulting Normal distribution is again squashed using a tanh [38, 51].

Order independence We note as an implementation detail that the transition distribution
qθ
(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1

)
should be independent of the order in which agents are provided.

Thus, reversing the ordering and considering qθ
(
s2t , s

1
t |s2t−1, s1t−1, a2t−1, a1t−1

)
should yield the same

distribution. We achieve this by two passes through the learned transition model and subsequent
averaging. In the second forward pass the agents’ input order to the transition model is flipped.

Training parameters Most of the training parameters correspond to the implementation of [38], a
state-of-the-art model-based RL algorithm for learning to plan in latent-space from image observations.
DLC trains every 1000 environment steps for 200 iterations with the Adam optimizer [47]. The batch
size is set to 50. The representation, value and actor model are respectively trained with learning
rates 6e-4, 6e-4, and 8e-5. Gradients over the magnitude of 100 are clipped for all models. The prior
σpriorτ,s and posterior σpostτ,s variance in the transition model are bounded from below to a minimum
value of 0.1. The model loss on true observations JM,s1t ,s

2
t

is weighted twice as much as the model
losses on predicted opponent observations JM,s1t ,s̃

2
t

and JM,s̃1t ,s
2
t
. Throughout, we use γ = 0.99 and

λ = 0.95. The model learning horizon is L = 50 whereas the imagination horizon is H = 15. Value
and action models are trained on the same trajectory rollouts.

Environment details To ensure generalization, we randomized both the color and initial position
of all vehicles throughout training. We also evaluated (but did not use) penalization for driving in the
backward direction which can occur after returning from a spin on the grass.

B Derivations

Our representation model is a latent variable model. That is, it can be written as

pθ(St|St−1, At−1, Ot) = pθ
(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1, o1t , o2t

)
=

∫ ∫
pθ
(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1, z1t , z2t

)
· p(z1t |o1t ) · p(z2t |o2t ) dz1t dz2t ,
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where St := {s1t , s2t} is the concatenation of both states and At−1, Ot−1 are defined analogously.
Each agent i maintains its own belief of the world, without having access to both observations. Thus,
at test time it computes instead

pθ(St|St−1, At−1, oit) =

∫ ∫
pθ
(
s1t , s

2
t |s1t−1, s2t−1, a1t−1, a2t−1, zit, z̃¬it

)
· qθ(zit, z̃¬it |oit) dzit dz̃¬it .

Therefore, we never need to learn p(zit|oit). Instead we directly learn the representation qθ(zit, z̃
¬i
t |oit).

This is implemented as a convolutional encoder fE(oi) making qθ(zit, z̃
¬i
t |oit) a Dirac distribution

qθ(z
i
t, z̃
¬i
t |oit) = δ

(
(zit, z̃

¬i
t )− fE(oit)

)
.
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C Additional Visualizations of Common Scenarios

A: Cornering

B: Overtaking on the outside

E: PIT maneuver

F: Overtaking attempt on the inside

H: Evading a blocking maneuver 

I: Avoiding PIT maneuver

J: Cutting corner by maneuvering on green

G: PIT Maneuver

D: Blocking

C: Evading a blocking maneuver

time

Figure 6: The agent has learned to leverage a large variety of racing skills towards their competitive
advantage. The skills include cornering, blocking, overtaking, and forcing others off the road.
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A: PIT maneuver

B: Forcing opponent off the road

C: Controlling drift

D: Failure to control traction

E: Blocking opponent

F: Blocking via line adjustment

G: Forcing opponent off the road

H: Blocking overtaking maneuver

I: Overtaking by cutting corner

J: Overtaking via PIT maneuver

time

Figure 7: During a race, agents have to drive at the dynamical limits of handling to move as fast as
possible along the track. While they don’t receive penalties for leaving the road, moving onto the
slippery grass increases the risk of spinning out.
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