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Abstract

In this thesis an algorithm is proposed to let modules of a modular robotic platform, the Distributed
Flight Array from ETH Zurich, pair up and then dock to their partner. During this process,
modules first localize each other by estimating the bearing of their peers, then they will choose
a partner among the modules within their neighborhood, approach this partner and dock to it
with the use of magnets. For the localization task IR—transceivers are used to determine when two
rotating modules are line—of-sight and a gyroscope then provides the current orientation angle.
Modules are able to move on the ground with the help of omnidirectional wheels. To begin with,
we introduce various hardware features and their corresponding application, namely driving on the
ground, communication between modules, bearing estimation and collision detection to detect when
two modules reach each other. Those elements play a key role in the pairing task. Subsequently,
the method for two partners to dock to each other is presented followed by the algorithm that
allows modules to choose a partner. It is based on the information a module gathers from the
modules in its neighborhood. Different weaknesses and flaws where the algorithm does not find
the maximum amount of possible pairs are evaluated as well. At the end, we analyze the results
from experiments conducted around the pairing task.
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Chapter 1

Introduction

In modular robotics a typical subject is for individual units to come together, assemble into a
bigger structure and then perform a corporate task they are incapable of doing alone. One such
modular robot is the Distributed Flight Array (DFA), a platform for research in distributed con-
trol and estimation developed at ETH Zurich. The DFA consists of multiple hexagonally shaped
units, called modules, that can drive on the ground with omnidirectional wheels, communicate
with other modules wirelessly (IR) or via a wired connection, dock with the help of magnets and
then take coordinated flight using propellers, one of them attached to each unit. This platform is
characterized by the fact that modules need to join together to be capable of flying since they are
unable to individually fly.

This report aims to investigate the task of joining together, commonly called self-assembly, which
might act as a starting point for any subsequent coordinated action. The DFA is already able to
self—assemble making use of a modified version of a rendezvous algorithm [8] but only in random,
non—specified configurations. The main objective here is to explore whether the DFA may also
self-assemble in predefined structures.

For that we present a method to let two modules specifically dock to each other on a desired side.
Afterwards, this approach is generalized so that any arbitrary number of modules can pair up
and dock to their respective partner. The method presented comprises a set of features that were
defined during the design process: The algorithm is scalable in a sense that regardless of the num-
ber of modules used it is always applicable, which allows to create any desired structure without
limitation on the amount of modules included. It is distributed so that each module computes
the necessary steps on its own with information it gathers from its neighborhood. This is done to
keep the approach scalable but also to avoid any global communication. The algorithm was also
designed to be homogeneous in a way that all modules abide by the same rules. This increases
the flexibility since any module is then fully replaceable. Moreover, modules apply the actions in
a parallelized manner where all modules act simultaneously instead of sequentially avoiding the
otherwise necessary agreement on a docking sequence but also speeding up the process. Towards
the self-assembly of DFA modules in desired configurations the results obtained from this work
might serve as a first step in that direction.

Several modular platforms have already shown self-assembly in predefined shaped under various
circumstances and with different kind of sensors [6]. Some of them use IR—sensors to communicate
[15], [9], some rely on cameras [16], [5], [12] or radio communication [11]. Most systems depend on
a seed to initiate the process where one unit after another is recruited by the seed and docks to it
to achieve the final shape. In contrast, this report proposes a method where no seed is required
and modules dock to each other in parallel rather than in a linear fashion.

We begin with reviewing the hardware of the DFA and especially the aspects relevant for self—
assembly in Chapter 2. The respective purpose of the various features is explained as well. In



the following, Chapter 3 explains the approach to let modules pair up and dock to their partner.
First, the state machine to let two partners dock to each other is presented, then the algorithm
that enables multiple modules to find a partner is explained and strengths as well as weaknesses
are highlighted. To analyze the proposed method experiments were conducted whose results are
discussed in Chapter 4. Finally, the thesis is concluded in Chapter 5.



Chapter 2

Relevant Hardware Features And
Their Corresponding Purpose

In this chapter the hardware of the DFA is presented. We give a general overview of the relevant
hardware aspects, see Section 2.1, followed by a closer description of the various parts that are
especially important for letting modules autonomously dock to each other and their respective ap-
plication. The kinematic relations for driving and the corresponding controller that was developed
is described in Section 2.2 and Section 2.3 discusses the various communication capabilities. Bear-
ing estimation of neighboring modules is depicted in Section 2.4 and collision detection between
modules is described in Section 2.5.

2.1 The DFA Hardware

As described in [13] the modules of the DFA are hexagonally shaped, symmetric, weigh 255 ¢ and
their side to side length is 250 mm. Three omnidirectional wheels, each driven by a 0.5 W brushed
DC motor, provide holonomic 2D—motion. For docking two modules, four magnets are installed
on each side to hold modules together once they are sufficiently aligned. Moreover, a number of
sensors and communication devices is included for various purposes and in the following the ones
relevant for the self-assembly task are listed:

e Inertial measurement unit (IMU) including a three—axis digital MEMS rate gyroscope and
accelerometer.

e Line of sight I[R—transceivers on each of the six sides, called ports, with a range of about 1m
and a transmission cone of roughly 5° used for communication purposes.

e Spring—loaded pins for communication via a UART—interface when modules are docked with
each other.

e Low-latency, unidirectional broadcast system that is used to transmit user—-commands from
a base station.

The inertial measurement unit, the communication devices and the driving capabilities are of par-
ticular interest in this context since they play a significant role during the pairing task. Their
purpose (sensing, communicating and driving) is discussed in the remaining sections of this chap-
ter. All aspects described above are completely identical on every module allowing the pairing
algorithm, which will be introduced later, to be homogeneous as desired. Figure 2.1 (A) provides
an overview of a module’s hardware.
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Figure 2.1: The hardware of a module and the coordinate frame to navigate a module is shown.
(A) The following parts are necessary for two modules to assemble: (a) Magnets to dock to each
other, (b) IR-transceivers to communicate with modules within the sensing range, (c¢) pins to
communicate in the docked state, (d) the inertial measurement unit, which houses the gyroscope
and the accelerometer, (e¢) H-bridge electronics, (f) omnidirectional wheels for holonomic motion,
(g) electronics for communication via pins and IR [13].

(B) The figure shows how the body—fixed coordinate system M is orientated. The omnidirectional
wheels, each separated to the others by 120°, are located at a distance d away from the center and
the first wheel is rotated at an angle § = 15° w.r.t. Xs. The body frame is rotated w.r.t. to the
inertial frame (not shown here) by the angle « in positive z—direction [§].

2.2 Kinematics

For driving on the ground a module possesses three omnidirectional wheels, each separated by
120°. Those wheels allow a module to translate and rotate in any desired direction, even at the
same time. However, the pairing task only requires modules to either rotate or translate.

2.2.1 Basic Relations

Velocities are described in a body—fixed coordinate system, denoted by M, that is located in the
geometric center of the module, see Figure 2.1 (B). A module’s velocity ¥ = (z,y, &) consists
of two components for the translational motion (&,y) and one component for the rotation (c).
The relation between ¥, in the body frame and the individual wheel velocities (v1,v2,v3) is as
follows [8]:

vy —sin(0) cos(0) d z
vg | =T0)- 0= | —sin(5 —0) —cos(§—-0) d |-]| g (2.1)
U3 sin(3F —0)  cos(3—0) d &

The physical parameter d describes the distance between the origin of the coordinate frame M and
each wheel, whereas 6 is the angle between the X—axis of the coordinate frame M and the wheel
closest to it, see Figure 2.1 (B).
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To navigate a module an inertial frame I is introduced as well, which is chosen such that the initial
body frame corresponds to the inertial frame. The inertial frame is used to navigate modules
and the generated velocities are transformed accordingly to wheel velocities via the respective
transformations. Since the module is assumed to operate on a perfectly flat surface any rotation
between the inertial and the body frame can be neglected except for the rotation around the
common z—axis that is perpendicular to the surface. To transform a vector from the inertial frame
to the body frame the following transformation, i.e. a rotation about the inertial z—axis, is used:

cos(a)  sin(a) 0O
Uy = | —sin(a) cos(a) 0 | -7, (2.2)
0 0 1

where a denotes the angle about the inertial z—axis. Using the transformations (2.1) and (2.2)
the generated velocities expressed in the inertial frame can be transformed to the according wheel
velocities.

2.2.2 Estimation Of The Current Orientation Angle

To determine «, i.e. the relative angle from the initial orientation, the angular velocity ¢, which
can be measured directly with the gyroscope, is numerically integrated to estimate the current
orientation « of the module. Since such IMUs are susceptible to drift, the gyroscope is constantly
recalibrated when the module is not moving. This can be determined by the current value of
the velocity input. Also, to account for the fact that a module might be moved manually, the
accelerometer is checked for whether any motion can be detected. When the norm |@| of the
acceleration @ = (I, 9, ) exceeds a certain threshold, the gyroscope will not be recalibrated until
the module is not moved anymore. The accelerometer, on the other hand, was calibrated once off
board and is not recalibrated on board.

2.2.3 Drive Controller

In order to navigate a module, it is desirable to have feedback on the three degrees of freedom
in 2D-space, denoted here by x, y and « or in vectorial form ¥ = (z,y,«). This would allow
one to use a control loop on those three states to accurately approach a desired position. In fact
however, there is no feedback on the position of a module or the translational velocities available
onboard. Thus any desired translational motion is simply fed forward to the wheels and there
is no information about the actual distance a module has moved. On the opposite though, the
current orientation « of the module is estimated with the data acquired from the gyroscope as
described above. This information is used in a manually tuned PID control loop to achieve the
desired angle when rotating. During translation a PD—controller, also manually tuned, keeps the
orientation of the module constant. The I-Part was found to be redundant in this case. Having
control over the orientation of a module is essential for the docking process described in the next
chapter (Chapter 3) to work properly.

2.2.4 Experimental Analysis

To analyze the performance of the controller for orientation we conducted various experiments
where a single module moved on the ground. The experiments took place in the Flying Machine
Arena of ETH Zurich that features a high—precision tracking system [10], which was used to gain
ground truth data of the current position and orientation of the module.

Five identical experiments were conducted in which a module was supposed to rotate for 360°,
see Table 2.1 for the results and Figure 2.2 for the error of the onboard orientation estimation.
To evaluate the error of the onboard orientation estimation the onboard data was synchronized
manually with the ground truth data during post—processing. In all experiments the module
rotated too far with the error varying approximately between 2° and 4°. It can also be seen that
the orientation angle is underestimated by about 2° to 5° after rotating but never overestimated
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and that it oscillates during the rotation phase. This may explain why the module rotates too far.
Moreover, it is worth noting that in three out of the five experiments the error of the estimation is
almost identical and in a fourth experiment the same oscillation may also be seen but shifted by
2°. This suggests that there is a systematical error present but to fully understand the behavior
of the error further analysis would be required.

A second set of five experiments is shown in Figure 2.3 where a module was supposed to move 1 m
without rotation in a desired direction. After the module starts moving, it is rotated by about
1° in all experiments but afterwards the orientation remains constant. Since there is no integral
feedback action for the angle during translation the error is not compensated for. Furthermore, the
error of the onboard orientation estimation is significantly below the error during rotation. This
might be due to less drift in the gyroscope during translation. As stated before in this section there
is no feedback on translation. When looking at the position of the module it can be seen that it
does not move far enough. One possible explanation could be that the wheels are modeled without
slipping but slipping is actually present. In the direction normal to the motion the module drifts
up to approximately 2cm/m.

The entire data has been lowpass—filtered during post—processing to reduce the effect of noise in
the figures. Additional experiments to analyze the performance of the drive controller have been
conducted and can be seen in the Appendix A.

| Final orientation angle [°]  Error to desired orientation angle [°]

1 363.59 3.59
2 361.98 1.98
3 362.25 2.25
4 361.69 1.69
5 362.05 2.05

Table 2.1: The final orientation angle and the error to the desired orientation angle for the con-
ducted experiments is shown (ground truth data). In all experiments the module was supposed to
rotate 360° but goes slightly further as can be seen.

Frror of onboard orientation estimation when rotating for 360°

—Experiment 1

—Experiment 2

Experiment 3

—Experiment 4

— Experiment 5
T

Error of estimation [°]

2 1 1 1 1 |
0 2 4 6 8 10 12

Time [s]

Figure 2.2: The onboard estimation is compared to the actual orientation and the error is evaluated.
In each experiment the module is supposed to rotate 360°. A positive error corresponds to an
underestimated angle.
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Orientation angle when translating in x—direction
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Figure 2.3: In all five experiments shown above the module was supposed to move 1 m in x—direction
(body frame) without rotating. The initial position and orientation was taken to be 0. In the
top plot the orientation of the module during the experiment is shown. The break in the curve
corresponds to the moment when the module starts moving. In the middle the error of the onboard
orientation estimation is shown and the lower plot displays the position of the module.
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2.3 Communication

Modules can communicate with each other by using their built—in communication capabilities.
When modules are not docked they use the IR—communication to exchange messages. Those line—
of-sight transceivers transmit in a cone of about 5° and have a range of approximately 1 m. Modules
are considered to be neighbors when they are able to sense each other via IR. When modules rotate
on the spot while transmitting it becomes more likely that two modules are in sight of each other, at
least temporarily, since the IR—transceivers do not transmit in all directions. Therefore, whenever
messages are transmitted via IR, modules will also rotate at the same time. Once modules are
docked they can communicate via the pins on the according port. The communication via pins is
also used to confirm the docking between two modules. Messages will be constantly sent out via the
pins and when a message is received back the docking is considered successful. Any message sent
out will be bundled in a consistent overhead byte stuffing (COBS) packet and a cyclic redundancy
check (CRC) is added. With COBS the receiving module can identify single packets within a
data stream by a unique starting sequence [1]. Any packet that is received can be checked for
completeness as well as correct transmission via a CRC [7].

2.4 Bearing Estimation

2.4.1 Working Principle

Another crucial feature for letting two modules dock to each other is their ability to sense the
bearing of neighboring modules. This is done by applying the following steps:

1. Modules rotate on the spot and periodically transmit messages via all IR—transceivers. Those
messages will at least contain the unique ID of the transmitting module.

2. Simultaneously each module receives IR—messages from the other modules. Those messages
are captured together with the current orientation angle yielding an estimation for the direc-
tion the packet came from and therefore the bearing of the neighboring module.

3. Afterwards, received messages are evaluated separately for each port where a packet was
received. From each port the maximum and minimum value for the orientation angle are
taken and those two are then averaged. Left with up to six bearing estimations (there are
six ports), those values are run through a random sample consensus (RANSAC) algorithm to
detect outliers, neglect them and to average the remaining ones [4]. This yields an estimation
for the bearing of neighboring modules.

Since each module possesses an unique ID, we can determine the bearing of several modules at the
same time by applying above steps for each neighboring module individually.

2.4.2 Experimental Analysis

Similarly to the previous section, experiments were conducted in the Flying Machine Arena to
acquire ground truth data of position and orientation of modules [10]. In these experiments,
two modules were randomly placed apart from each other but within the sensing range and both
modules sensed the bearing of the other. We then compared the results to the ground truth data. It
was also evaluated how the RANSAC algorithm improves the result compared to a simple average
of each port measurement.

Ten experiments were conducted, see Figure 2.4, and the bearing estimation of both modules was
evaluated (results 1-10 from module one and results 11-20 from module two) with the error of the
overall estimation varying between approximately 0° and 25°. The overall estimation, as stated
before, results from the average of the estimations from each port, which are taken as the average
of the minimum and maximum value acquired from the respective port. It can be seen that in most
experiments there are less than six single estimations although there are six ports, which was found
to be due to the unreliable IR—communication. One reason for the unreliable IR—communication
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is that since the IR—transceivers are line—of-sight the region to receive the signal is rather small.
This makes it more unlikely for modules to always exactly meet in a configuration during rotation
(regarding orientation towards each other) where they can sense one another. Also, the transceivers
cannot transmit as well as receive at the same time and the communication between modules is
not synchronized. Therefore, it can happen for modules to transmit and receive at the same time
but then no message at all comes through.

Concerning the RANSAC algorithm no improvement over the simple average is identified for most
cases. Typically, the single estimations from each port were spread over an interval of about 10°.
For instances with significant outliers on the other hand, as in experiment 18 in Figure 2.4, the
outlier is detected and removed from the average.

The spread of the estimations between ports but also the actual error can be partially explained
due to the type of the IR—-transceivers (line—of-sight, cone-like shaped transmission region) and
the geometry of the modules (hexagon). In the ideal situation the data gathered from one port is
spread over a certain interval but remains centered around the actual bearing. When two modules
are initially orientated randomly and then start rotating at the same speed, the following situation
may occur as well: Modules only sense each other in a partial interval of the ideal interval causing
the data to be centered around a different value than the actual bearing. Another source of error
is certainly the drift in the estimation of the orientation angle.

Error of onboard bearing estimation

301
55 {>Ransac &
“ || X Average o
2 201 o Single measurements <§>
3 15F @} o
3 1 o & % &
e 10’ o [e) [e)
T § .
T 0= ° é’ % 5 %
_go St ° & © é © <§> o
8 _107 § o @ § ] o]
o
5-15F
£ o
= 201 o 8
-25+F
_30 1 | | | | |

| | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Experiment number
Figure 2.4: The onboard bearing estimation is compared to ground truth data. Two modules were
used to sense the bearing of each other (experiment number 1-10 for one module and 11-20 for the
other module). All data is plotted w.r.t the error to the ground truth data. The single estimations
from each port are shown as well as the RANSAC result and the average of all estimations.

2.5 Collision Detection

When docking to each other as described in Chapter 3, two modules must be able to determine
when they have reached each other. Since there is no information about the distance they are
apart from each other nor is there any reliable feedback on the distance a module is displaced, they
instead actively monitor collisions, which can be achieved with the onboard accelerometer.
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2.5.1 Working Principle

When one module is moving towards another one and they hit each other, the collision in this
moment can be sensed. In particular, we consider the Fuclidean norm of the acceleration in x—
and y—direction, i.e. |dzy| = |(Z,#)|, where x and y are the two directions of translational motion,
see Figure 2.1 (B). The following steps are applied to check for a collision:

1. A module keeps the latest set of |@y,| samples with & and § acquired from the accelerometer.

2. If within this set at least three of the samples are above a certain threshold, the event is
considered a collision. The actual threshold depends on whether the module is moving or
not.

Due to the eccentric placement of the IMU collisions may only be detected reliably when the
module does not rotate but only translates. This is because during rotation the IMU is subject
to centripetal forces that increase quadratically with increasing angular velocity (~ &2) making
collision detection by a single threshold more difficult. Further, the collision detection is only to
be used when the module is uniformly moving since the accelerations achieved during accelerating
a module to the desired speed are of similar magnitude as the chosen threshold. To account for
that, the detection is only activated shortly after the motion has reached a steady state. It must
be noted that modules cannot distinguish between different kinds of collisions. Therefore, any
collision is treated the same way and the module will assume it just hit another module, regardless
whether it actually hit a module or just any random object, e.g. an obstacle.

2.5.2 Experimental Analysis

The collision detection mechanism was developed based on the information gathered from exper-
iments in which modules drove against each other to simulate a collision. We then evaluated the
norm of the acceleration in x— and y—direction. One set was conducted for a module approaching
another module and a second one for a module expecting to be approached, see Figure 2.5. It
can be seen that the peak acceleration highly varies between experiments, which we assume to be
out of two main reasons: First, the peak depends on the orientation of modules and the eccentric
placement of the accelerometer causing different damping in each situation. Second, it might not
be guaranteed that the actual peak of the collision is sampled.

Since three samples must be above the chosen threshold to consider the event a collision, not only
the peak but also the third largest value during the collision, called threshold value, is examined.
It is found that even the lowest threshold value is clearly apart from the average noise. Therefore,
it was chosen to set the threshold about 20% below the lowest threshold value.

Additional experiments regarding the collision detection were conducted to further analyze the
reliability of the mechanism, see Appendix A.
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Collision data while approaching (500 Hz)
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Collision data while standing still (500 Hz)
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Figure 2.5: For detecting collisions the norm of the acceleration in x— and y—direction is analyzed.
For each experiment the peak acceleration is shown as well as the third highest value (threshold
value) and the average noise. It is distinguished between an approaching module (upper plot) and
a module that is standing still when the collision occurs (lower plot).
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2.5. Collision Detection




Chapter 3
Pairing Algorithm

The following chapter presents the algorithm that is used to let modules autonomously pair up and
dock to each other. In Section 3.1 we explain the approach developed for two modules to dock to
each other based on the corresponding state machine. This work is built upon the results from the
previous chapter where the key features (sensing, communicating and driving) for self-assembly
were closely examined. Section 3.2 discusses how the approach for two modules can be generalized
to an arbitrary number of modules. The goal is that every module finds a partner and docks to its
partner afterwards, see Figure 3.1.

Figure 3.1: Six modules are currently in the process of docking to their partner. One pair has
already successfully docked and one is about to dock, whereas the third pair is still separated.
Those two are currently approaching each other and will eventually also dock. Once every module
has paired up, the process is completed.

3.1 Autonomous Docking Of Two Modules

Towards the goal to have multiple modules pair up, we first evaluate how two modules can stably
dock to each other. This can later be used to let any number of modules dock to their correspond-
ing partner once they have found one. A number of specifications for this task is addressed in
Section 3.1.1 and the state machine is presented afterwards in Section 3.1.2. The algorithm was
developed with the help of continuous testing where the state machine was implemented on several
DFA modules but not with simulations.

13



14 3.1. Autonomous Docking Of Two Modules

3.1.1 Prerequisites

As mentioned in Chapter 1 the approach is supposed to be distributed, homogeneous on all modules,
scalable and parallelized. For the task of docking two modules some of the specifications drop out
since the number of modules is limited to two. Therefore, especially the conditions for having a
distributed and homogeneous algorithm are of importance. Throughout the process the abilities to
communicate, sense the bearing and detect collisions are thoroughly used. In Figure 3.2 a possible
configuration in the initial and final state of two modules docking to each other is shown.

Figure 3.2: Two modules are shown before (a) and after (b) they have docked to each other. The
initial configuration can be arbitrary but modules must be able to sense each other with the use
of the IR—transceivers.

3.1.2 State Machine

The state machine, based on a UML approach [14], consists of seven different states, which are
sufficient to let two modules dock, see Figure 3.3. A short overview of all states will be given
followed by a closer description of each of them. At the beginning, the two modules will try to
sense the bearing of each other. Afterwards, they are going to orientate towards each other and
then one of them is going to approach the other one. When they have reached each other, they
will try to dock. If the docking is successful the process is finished, otherwise they will back up
and repeat the procedure. Also in case they have not reached each other during the approach they
will repeat the procedure.

Idle state

In the beginning, modules will be in the idle state where they do not move or do anything else except
for awaiting an external signal from the user to initiate the process. This signal is transmitted via
the unidirectional broadcast system described in Section 2.1. This triggers the transition to the
next state, the find state.

Find state

Both modules will rotate on the spot and try to sense the other one by receiving messages from
the other module via the IR—transceivers. This will look somewhat similar to what can be seen
in Figure 3.2 (a). At the same time modules estimate the bearing following the approach described
in Section 2.4, where the combined input from the gyroscope and the IR—communication is used.
It was found to be sufficient to let modules rotate for 360° so that packets from the other module
should be received on each port at least within one time interval. In case modules cannot sense
each other, e.g. because they are not within range of each other, they will go back to be idle.
Otherwise they are going to orientate towards each other. To keep the action of both modules
synchronized the respective transition is only allowed once a timeout is triggered. The timeout is
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based on the expected duration of the state. It is to be noted that all subsequent transitions work
in a similar matter for the same reason.

no one available
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Figure 3.3: This figure shows a graphical representation of the state machine for letting two modules
autonomously dock to each other. Rounded rectangles correspond to states, arrows in between
states indicate transitions and the according label marks the condition necessary for the transition
to take place. The initial state (idle state) is marked by a filled circle.

successful connection

Orientate state

For each docking module we can specify one of the six ports to be used for docking. In this state
both will orientate the specified port towards the other module, see Figure 3.4. The necessary
information for that is available, namely the current orientation, the geometry of the module and
the bearing of the other. The controller for rotation, which was introduced in Section 2.2, is used
to accurately rotate the module such that the desired ports face each other. Afterwards, modules
continue to the next state (approach and expect).

Figure 3.4: Two modules are shown during the orientate state. (a) After modules have sensed
each other they will be randomly orientated towards each other. (b) We can see the same modules
after they orientated the desired port towards each other. Due to some errors in the measured
quantities modules may not be perfectly aligned.
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Approach and expect state

Depending on the unique ID of the modules, the one with the lower ID will move towards the
estimated direction of the other one. The second one will not move and simply wait for the
first one to reach it, see Figure 3.5. The reason why it was decided that only one of the two is
approaching is related to the case when multiple modules pair up (Section 3.2). During this time
both modules turn on the collision detection mechanism, see Section 2.5. Therefore, modules can
sense when they have hit another object. They will then assume the object they collided with is
the other module and proceed to the next state.

Figure 3.5: Three excerpts in the approach and expect state are displayed here. (a) Modules have
finished orientating towards each other. (b) The one with the lower ID (in the back of the picture)
is approaching the module with the higher ID. Both are in collision detection mode. (¢) The one
module has reached the other one. Since they are able to detect the collision they know they have
reached each other and the approaching one stops moving.

(0) ©

Figure 3.6: In the case shown here one module did not estimate the bearing of the other one
accurately enough and therefore approaches in the wrong direction. (a) Modules have already
finished orientating towards each other but the module in the back is still misaligned due to errors
in the estimation of the bearing. (b) While approaching it becomes more obvious that the bearing
was not sensed correctly. (¢) The timeout of the state was triggered and caused the modules to
stop. Otherwise, the approaching module would have continued until it hit a random object.

However, the case that modules do not reach other may arise and has to be considered. This can
happen out of two main reasons:

e One of the two detects a false collision due to some obstacle or unexpected noise in the
measurements.

e The bearing estimation of one module is so inaccurate such that it passes by the other one
while approaching without touching it.
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To account for those errors, the transition from this state to the next state (try to dock) will be
solely triggered by the timeout of this state regardless whether a collision has been detected or not.
Therefore the amount of displacement of the approaching module is limited in each iteration, even
if it is approaching the other one correctly. This is due to the fact that there is no feedback on how
accurately it is approaching once it has started moving. The case where one module inaccurately
estimates the bearing of the other one can be seen in Figure 3.6. In the following state (try to dock)
different actions will be applied depending on whether a module was able to detect a collision.

Try to dock state

In the ideal case (see Figure 3.5) the modules have reached each other and both have detected
the collision. However, most likely modules will still be slightly misaligned and therefore they are
not docked yet. Instead of immediately repeating the whole procedure, both modules will apply a
sequence of motion to try to dock to each other, see Figure 3.7. This motion sequence consists of
small rotations in both directions and short translational motions towards the other one in between
cach rotation. The sequence is only executed when a module detects a collision, whereas a module
that has not detected a collision before will simply await the corresponding timeout of the state,
again to keep actions between modules synchronized. This accounts for the case when modules
have not reached each other yet, but also for the case only one module detects the collision. During
this state (and actually during any other state as well) it is constantly checked whether a message
could be received via the pins as described in Section 2.3. Once a message is received, modules
know they have successfully docked to each other and will immediately terminate the process and
go back to the idle state. In the event no message via the pins is received it is considered that
they have not docked yet and they will then continue with the back up state. This may arise due
to various reasons, namely because the motion sequence was not successful or modules have not
reached each other yet.

(b)

Figure 3.7: Modules apply a sequence of motion, consisting of alternating rotations in both direction
and translations towards the other one, to dock to each other. (a) The picture shows the initial
position of both modules when they have reached each other. (b) After the first time they have
rotated and moved towards the other one, they are clearly more misaligned than before. This can
happen since modules always start rotating in the same direction. (¢) Modules have rotated back
and will now again move towards each other. (d) The docking is successfully established and both
modules stop moving.

Back up state

In case modules did not dock they need to repeat the whole procedure. For that both of them will
back up approximately 10 cm by moving in the opposite direction of what was last estimated to
be the bearing of the other one. Afterwards, modules will start over and go back to the find state.
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3.2 Pairing Of Multiple Modules

In the previous section we discuss how two modules can autonomously dock to each other. The
following section proposes an algorithm to generalize this approach to an arbitrary number of
modules, i.e. let modules estimate the bearing of their neighbors, decide on a partner to pair up
with and finally dock to this partner in the before described manner. First, we make a few remarks
on the algorithm in Section 3.2.1, then the way a configuration of multiple modules is modeled as
a graph is reviewed (Section 3.2.2). Afterwards, we present the solution that was developed for
letting modules pair up (Section 3.2.3). Several aspects of this approach are evaluated subsequently
in Section 3.2.4.

3.2.1 Prerequisites

Similarly to the autonomous docking of two modules this algorithm should also adhere to the
specifications proposed in Chapter 1. Unlike for the docking of two modules all of them should be
met, which is accomplished in the following way: Homogeneity is achieved by letting all modules
follow the exact same algorithm. As before an unique ID may be used to distinguish modules. A
distributed approach is ensured since each module computes everything autonomously on board.
The scalability is maintained by omitting any global knowledge of the structure. Therefore, the
algorithm may accommodate for any arbitrary amount of modules. Finally, each module will apply
the steps simultaneously to retain a parallelized approach.

Moreover, modules will use the IR-transceivers to exchange messages and communicate the decision
process of who pairs up with whom.

3.2.2 Modelling Multiple Modules

Throughout the section we use various terms, which will be explained in the following: A neighbor
or neighboring module, which was defined before in Section 2.3, refers to a module within the
sensing range. A set of modules is described by the neighbor graph N where each node represents
a module and each edge refers to the fact that the modules are neighbors, see Figure 3.8 (a). In
case a path exists between every pair of modules the graph is considered connected. Further, when
modules find a partner they are considered unavailable for other modules as partners. For this
purpose a second type of graph, the availability graph A, is defined, where a node corresponds to an
available module and an edge refers to two available modules that are neighbors, see Figure 3.8 (b).
Hence an edge of the neighbor graph A is not an edge of the availability graph A if at least one
of the two modules is not available as a partner. A is therefore a subgraph of A. For an arbitrary
configuration of modules, A may be disconnected although the corresponding graph A is connected.
It is noted that the terms connection and "to be connected" refer to the TR—connection between
modules as defined for the corresponding graphs A and N but not to the physical state of two
modules docked to each other. For that we use the term docking.

O \\\
O @,
(b)

Figure 3.8: Above, the neighbor graph A/ and the availability graph A of the same configuration
are shown. Green modules are available and unavailable ones are marked red. (a) In the above
configuration N is connected since there is a path between every pair of modules. (b) The corre-
sponding availability graph A is also connected. It is to be noted that unavailable modules are not
considered as a node of A.
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Perfect matching
Consider the following definition of a matching M [2]:

Definition 3.2.1. Given a graph G = (N, E), consisting of nodes N and edges E, a matching M
is a set of edges where any pair of edges does not share a common node. A node is called a match
if it is an endpoint of an edge of the matching M.

Therefore, a set of matches is a number of paired nodes or within this context nothing else than a
number of paired modules that are going to dock to each other out of a larger entity of modules.
Furthermore, for the application of pairing modules it is desirable to create as many pairs as
possible. For that consider the following two definitions [2]:

Definition 3.2.2. A mazimum matching is a matching with the maximally possible number of
nodes for a given graph G. v(G) denotes the number of matches in a maximum matching. There
may be several maximum matchings of G.

Definition 3.2.3. A mazimum matching is called perfect if and only if v(G) = ‘—];” where |N|

denotes the number of nodes. This can only be true when |N| is even. For an odd |N| one may
. _ IN|=1

define an almost perfect matching where v(G) = ——.

In Figure 3.9 a maximum matching of two configurations is shown, whereas one of them is also

perfect. In case of the pairing task the optimal solution would be the maximum matching of a

given neighbor graph A/. This would guarantee that the maximal possible amount of modules

pairs up. One may apply Tutte’s Theorem [2] to find v(G) and therefore check whether a perfect

matching exists. The theorem is not stated here since it is beyond the scope of this report.

O—CO0—C0—CC—=

(a) (b)

Figure 3.9: Two different neighbor graphs are shown with one maximum matching for each (matches
are highlighted yellow). (a) For this configuration the maximum matching is perfect and a partner
for each module can be found. (b) In this case only one match can be found and two modules are
left without match.

3.2.3 Description Of The Algorithm

As stated before the goal is that an arbitrary number of modules sense each other, decide on a
partner and then dock to the respective partner. Additionally, during the design of the algorithm
to decide on a partner we considered the following aspects as well:

e The solution of the algorithm should converge and be unique since it is supposed to be
implemented in a distributed fashion.

e [t is desirable that the algorithm finds a maximum matching as this ensures that no additional
modules may possibly pair up.

e Once modules have docked to their respective partner the new neighbor graph should still
be connected. Otherwise pairs cannot communicate to each other anymore.

Taking into account the stated specifications as well as the prerequisites from Section 3.2.1 a
module a; bases its decision for its desired partner according to the following rules: Among all
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of its available neighbors module a; will choose the one that has the least available neighbors.
In case several modules have the same amount of available neighbors, a; choses the one with the
least amount of total neighbors and out of those, if there is again more than one, it picks the
one with the lowest ID. Algorithm 3.2.1 states the decision process in a more formal way and
Figure 3.10 provides an example of such a decision process. The first two criteria were chosen to
ensure that modules with less neighbors, i.e. with less possibilities to pair up, get paired up first
and are therefore less likely to be left over when compared to a random decision process. The third
criterion (ID) ensures that the behavior of the algorithm remains deterministic and the choice for
the desired partner is always unique, which is of advantage when the algorithm is implemented in
a distributed fashion. After deciding on a partner, it is checked whether two modules have chosen
one another. In this case, the pairing is confirmed and the modules will become unavailable for
others. When there are unpaired neighboring modules left the algorithm is executed again until
no more pairs can be found. For modules that are unpaired but have no more available neighbors
the algorithm will not be executed again since no partner can be found. They are going to remain
without partner.

Algorithm 3.2.1 Choose desired partner of module a;

1: A(a;): set of available neighbors of module g;

2: |T'(a;)|/|A(a;)|: amount of total/available neighbors of module a; € A(a;)
3: ID(a;): unique ID of module a;

4: function CHOOSEDESIREDPARTNER

5 ID(a,) < ID(ay) > initialize desired partner (subscript p) with any a;
6 for all a; € A; do

7: if |A(a;)| < |A(ap)| then

8: 1D(ap) < I1D(aj)

9 else if |A(a;)| = |A(ap)| A |T(a;)| < |T(ap)| then

10: ID(ayp) < ID(a;)

11: else if |A(a;)| = |A(ap)| A |T(az)] = |T(ap)| A ID(a;) < ID(ap) then
12: ID(ap) < 1D(ay )

13: end if

14: end for

15: return 7D(ap)

16: end function

Only the module with less total neighbors out of each pair is moving towards its partner to increase
the likelihood that the neighbor graph N stays connected once modules dock to each other. The
other one will remain on the spot. Algorithm 3.2.2 provides more detailed information on how
modules decide on which partner is approaching. The intuitive idea behind this is that modules
with more neighbors are thought to be closer to the center while modules with less neighbors are
thought to be more towards the convex hull of the graph. Letting modules move away from the
convex hull closer to the center is supposed to ensure that the neighbor graph remains connected.

Algorithm 3.2.2 Decide if module a; approaches or expects its partner

1: |T(ap)|: amount of total neighbors of partner (ID(ayp))
2: function DECIDEONAPPROACH

approach < false

4: if |T(ap)| > |T(a;)| then

5 approach < true

@

6 else if |T'(ap)| = |T(a;)| A ID(ap) > ID(a;) then
7 approach < true

8 end if

9: return approach

10: end function
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wWw -

(a) (b)

Figure 3.10: The pairing algorithm is executed for the above configuration. The column of numbers
next to each module denotes the following: The amount of available neighbors (blue), the amount
of total neighbors (green), the desired partner (red). The number inside a module corresponds to
the ID and the connection of partners is marked yellow. (a) The availability graph A in the first
iteration is shown. Two pairs can be found and two modules do not find a partner. (b) Since A
still possesses a connected component, i.e. modules 3 and 5, they may execute the algorithm again.
They are the only ones left available, therefore they choose each other.

Implementation on the DFA

The implementation of the algorithm is based on the IR—communication during the find state
that is used to exchange the necessary information between neighbors. To ensure the algorithm
converges in time modules now rotate longer ( 900°), see Section 4.2 for more information on why
this is necessary. The following steps are applied during the extended find state:

1. Modules first rotate for 180° such that each neighbor is sensed at least once.

2. Each module has now knowledge of how many total and available neighbors it has with both
numbers being equal in the beginning since no one has paired up yet. Next, they start sending
out the amount of their total and available neighbors, which they will continuously do until
a partner is found.

3. Once a module a; has heard back from all its neighbors and therefore possesses information
about their neighbors, namely the amount of available and total neighbors, the module may
apply the pairing algorithm. The ID of the desired partner a; will be sent out subsequently.

4. When a; has received a message from a; stating the partner module a; desires a; can decide
whether there is a match or not. If both modules a; and a; have chosen each other the
pairing for them is finished and both modules will from now on communicate that they are
unavailable as partners.

5. In case there was no match, a; will repeat the procedure starting at step 3 until it either
finds a partner or all neighbors of a; are unavailable leaving it unpaired.

Messages are sent out repeatedly in a fixed interval and altered in the different stages as described
above. It is to be noted that the above scheme is asynchronous apart from step 1 allowing modules
to individually decide when they can proceed to the next step. This approach features several
advantages when compared to a synchronous version: To synchronize modules, one could include
a central device to carry out the task. This, however, contradicts the specification that the overall
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task should be executed in a distributed fashion. Another possibility would be if modules com-
municated when they are ready to proceed, which does not meet the required scalability though
since the complexity increases with the number of modules. Simply timing the transition to the
next step is also a way to synchronize the action but this method is not fault tolerant. Consider a
situation where a module, out of some reason, has not received back any messages from its desired
partner but it is required to already proceed to the next step. Moreover, the clocks of modules
are not exact and, hence, drift. Under those circumstances an asynchronous approach is to be
preferred over a synchronous approach.

Once modules have decided on a partner, they follow the state machine described in Section 3.1 to
dock to their partner. The bearing is still estimated in the find state as for the case of two modules,
only in the general case with multiple modules the pairing algorithm is executed in parallel. When
modules did not successfully dock in the first place, they need to back up and go back to the find
state. They will not change their partner anymore but simply estimate the bearing of the already
found partner and then try to dock to it again. Figure 3.11 shows a set of six modules in the same
configuration as in Figure 3.10 from the beginning until the moment they have docked to each
other.

(e) (f)

Figure 3.11: A set of six modules is shown during pairing up and docking to each other. (a) The
initial configuration can be seen. Modules first decide on a partner and estimate the bearing of
their neighbors. (b) Each module has found a partner and approached the partner. The pair in the
front is already docked. The other pairs are going to back up to repeat the procedure. (c) Modules
are again in the find state but this time they will solely estimate the bearing of their partner. (d)
Both remaining pairs approached each other a second time. (e) The pair in the middle was able to
successfully dock, whereas the pair in the back needs to start over a third time. (f) The last pair
docked and the final configuration is achieved. Each module has paired up.

3.2.4 Discussion Of The Algorithm

In the following, the performance of the pairing algorithm is examined more closely, discussing var-
ious configurations and how the algorithm handles the situation compared to an optimal solution,
i.e. the maximum matching.
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Convergence

To begin with, we investigate whether the proposed algorithm always converges to a solution for
any arbitrary configuration N. For this consider the following properties that guarantee that a
solution is found every time, although it might not be optimal.

Lemma 3.2.1. For any given availability graph A that is connected, the pairing algorithm is
guaranteed to find at least one pair.

Proof.

Let a; be any node from a given availability graph A, T'(a;) the set of all neighbors of a; and
similarly A(a;) the set of available neighbors of a;. The modulus of any set refers to the number
of nodes in this set. Further, n denotes the minimum of available neighbors for any node,

n=min(|A(a;)]) Vi.
The subset Ay, of A describes all nodes with n available neighbors,
A ={a;i € A | |A(a;)] =n, Vi}.
Out of Ag the node ar, is chosen that has the following characteristics:
{ai € Ap | [T(ai)| < |T(ap)l], Vi} =0,
{aj € Ap | |T(aj)| = |T(ar)|, Vi} N{ar € AL | ID(ay) < ID(ar), Vk} =10.

From the specifications of ay, it follows that any a,, € A(ar) chooses ar, as desired partner because
ay, is the module that is most prioritized by the pairing algorithm. a; will now also choose a
partner a,, € A(ar). It immediately follows that there must be a match and one pair is found.

a

The next step is to discuss what happens to the new availability graph after the first pair(s) is (are)
found. The algorithm actually does not guarantee that the availability graph of the remaining
available modules stays connected, see Figure 3.12 for such a counterexample.

Lemma 3.2.2. [t is not guaranteed that the availability graph A of a given configuration remains
connected after an iteration although the initial availability graph was connected.

(2} & © ()
&) & © & © (5)
(1) O (1)

(a) (b) (c)

Figure 3.12: For the above configuration the pairing algorithm does not converge to a perfect
matching although it exists because the availability graph after the first iteration gets disconnected.
(a) During the first iteration two pairs are found. They are marked yellow. (b) The updated
availability graph after the first iteration shows that the remaining two modules are not connected
anymore, therefore no other pair may be found. (c) Actually, several perfect matchings exist, one
of them is shown.
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Nonetheless, it follows from the above lemmas that the algorithm converges to a solution whether
or not it is the optimal solution.

Proposition 3.2.1. The pairing algorithm will find at least one pair for a given availability graph
and it will also find at least one pair for every connected component of the availability graph that
results after the first iteration. This holds true for any number of iterations and any number of
connected components resulting from a previous availability graph.

Therefore, the minimal guarantee that can be given is that the algorithm does not create any
deadlock situations and that it finds at least one pair for any given configuration.

Maximum matching

As visible in Figure 3.12 situations exist in which the algorithm does not find a maximum matching
for a given configuration. In this sense (of finding the maximally possible number of pairs) the
algorithm is not optimal. A solution that guarantees to find the maximum matching for a given
graph actually exists, commonly called Edmonds’s algorithm [3]. However, it was chosen not to
rely on this algorithm for letting DFA modules pair up. The reason is that Edmonds’s algorithm
requires global knowledge of the structure, which violates the constraint of scalability.

Connection of graph after docking

All configurations considered so far remain connected even after modules docked to each other.
However, this is not true for any configuration, see e.g. Figure 3.13. Each module finds a partner
but then the connection of the docked pairs breaks up. Therefore, it cannot be guaranteed that all
modules are able to communicate to each other afterwards. This does not impose any complications
on the considered task, i.e. pairing modules, but it might be of interest for any subsequent action,
e.g. creating bigger structures of modules.

o“:’a a{’o

(a)

Figure 3.13: A configuration of modules is shown before and after docking. (a) The pairing results
in the above pairs, which are marked yellow. (b) After docking to their partners, the new neighbor
graph gets disconnected. Module 6 approaches its partner, module 7, and breaks up the connection
to module 8. The distance d they are apart is larger than the sensing distance.
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Crossing of modules

Another flaw in the pairing algorithm is of rather practical nature. Consider Figure 3.14 where
each module sees all the other modules. Therefore, their decision for a partner is solely based on
the ID and might turn out as as shown in Figure 3.14, where partners are across from each other.
When the corresponding modules are approaching their partners, they will most likely hit each
other causing them to detect a false collision and to initiate the motion sequence to dock. This will
fail. After that, all modules will go back to the find state but since they block each other’s vision
they cannot sense their partners anymore. This will cause the process to be terminated leaving
them undocked.

(b)

Figure 3.14: Four modules in a configuration where each one is connected to all the others. (a) The
pairs resulting from the pairing algorithin are across from each other. (b) The two modules that
are approaching run into each other while they are moving since their paths cross.
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Chapter 4

Experiments

In this chapter the performance of the pairing algorithm is experimentally analyzed and we discuss
the results from pairing experiments that were conducted. Section 4.1 analyzes the performance of
the state machine for docking two modules and in Section 4.2 the results from pairing experiments
with six modules are evaluated.

4.1 Docking Of Two Modules

To analyze the docking of two modules 15 experiments were conducted with random initial orien-
tation of the modules towards each other, see Table 4.1. In all cases in which modules sensed each
other (11 out of 15) they were able to successfully dock to each other on the desired port. It took
modules between one and three iterations to finish. The two main reasons that modules had to
repeat the procedure were the partially inaccurate bearing estimation, also see Section 2.4.2, and
the motion sequence for docking them that did not always result in a successful docking. There-
fore, the approach is stable in case modules already have sensed each other. The reliability of the
IR~communication again plays a significant role as for the bearing estimation.

4.2 Pairing Of Several Modules

The final experiments that were conducted investigated the performance of the pairing algorithm
and the docking that follows it. Ten experiments with six modules were conducted in which
modules were supposed to pair up and then dock to their corresponding partner, for the results
see Table 4.2. In the Appendix A more experiments regarding the pairing may be found where
four and five modules were used.

In five out of the ten experiments shown in Table 4.2 all six modules were able to pair up and
dock to their corresponding partner. In one case all modules paired up but then one pair lost sight
of each other when another module crossed their connection path. In the remaining four cases
the algorithm was only able to find two pairs (three experiments) or one pair (one experiment).
Designated partners mostly took one or two iterations to dock, sometimes it took them four or
five iterations. As for docking two modules the reasons for that were either the inaccurate bearing
estimation or the unsuccessful motion sequence during the docking attempt.

In the initial testing phase it was discovered that rotating 360° in the find state and communicating
meanwhile as for two modules is not enough time for the pairing algorithm to converge. This is due
to the unreliable IR—communication (Section 2.4.2 already investigated reasons for that). When
modules look for a partner they need to receive back messages from all modules several times to
come to a decision. This may take a while and therefore it was decided after further testing to
increase the initial rotation phase where modules pair up to 900° to increase the probability the
algorithm converges in time. For the experiments shown here modules rotated 900°.

27
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| Initial distance apart Success Iterations Time to finish Additional comments

1 0.5m yes 1 20s

2 0.5m yes 2 46's

3 0.5m yes 1 21s

4 0.5m yes 1 22s

5 0.5m yes 3 1min 11s

6 0.75m no 1 10s to failure sensed nothing
7 0.75m yes 1 21s

8 0.75m yes 2 46s

9 0.75 m yes 3 1min 10s

10 0.75m yes 1 18s

11 1m no 1 10s to failure sensed nothing
12 1m yes 2 16's

13 1m no 1 10s to failure sensed nothing
14 1m no 1 10s to failure sensed nothing
15 1m yes 2 46's

Table 4.1: The results from 15 docking experiments are shown. For all experiments it is stated how
far modules were initially apart (center to center), whether docking was successful and how many
iterations it took as well as the time to finish. In case of the unsuccessful events the time indicates
the moment of the transition back to the idle state. The initial orientation in all experiments was
random.
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| Successful pairs Iterations Time to finish

Additional comments

[\

1 min
lminb5s
lmin6s

1 3

One collision was not detected.

40s
1minbs
Iminb5s

1 min
1min 18s
1 min to failure

One collision was not detected. Pair 3
lost sight of each other because another
module crossed their path.

lminbs
1min 53s
24 s to failure

Algorithm did not find perfect match-
ing; only two pairs were found.

428
24 s to failure
24 s to failure

Algorithm did not find perfect match-
ing; only one pair was found.

428
1 min 53s
24 s to failure

Algorithm did not find perfect match-
ing; only two pairs were found.

41s
41s
1 min

1min4s
1minbs
2min 12s

41s
428
Iminbs

40s
428
24 s to failure

10 2

== RN = O N [N H R R R R R R RN NN N DN

Algorithm did not find perfect match-
ing; only two pairs were found.

Table 4.2: Ten experiments with six modules that were supposed to pair up were conducted. Each
row corresponds to one experiment and states how many pairs successfully docked to each other,
how many iterations it took each pair as well as what was the finishing time. Reasons why not all
modules paired up and further comments can be found in the last column.
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Chapter 5

Conclusion

This thesis proposed a method to let multiple modules from the Distributed Flight Array pair
up and afterwards dock to the respective partner. Modules decide on a partner according to the
information they acquire from their neighbors, namely the amount of their total and available
neighbors, and choose the module with the least available neighbors as their desired partner. If
the other one wants to pair up too, the pairing is confirmed and modules will dock to each other.
Otherwise they will continue looking for a partner until they have found one or no more modules
are available. The first step towards docking to the partner is to estimate the bearing of it, which
happens simultaneously to the pairing. For that modules rotate while listening to incoming IR—
messages. In the moment they are line-of-sight and receive messages the current orientation angle
acquired from the gyroscope is used to measure the bearing. Several measurements may then be
averaged to gain an estimation. The IR-transceivers are also used to communicate the decision
process. Afterwards, partners orientate towards each other and approach each other, whereas only
the one with less total neighbors out of the two partners approaches the other. This measure was
taken to keep all modules connected even after docking. A collision detection mechanism tells
modules when they have reached each other and they are then going to try to dock to each other.
If anything fails, modules repeat the procedure.

Once modules detected each other and paired up the method to let them dock proofed to be
fully stable in all conducted experiments. However, the theoretical and experimental analysis of
the pairing algorithm shows that there are still some unresolved issues to be tackled in the future.
One main problem emerged from the unreliability of the IR-transceivers whose intervals of mu-
tual visibility tend to be very irregular. This poses a huge complication on the implementation
of the pairing algorithm because modules are required to continuously exchange messages with all
neighbors. Currently, the period of rotation during the pairing was simply raised to increase the
probability the algorithm converges in time. A more proper solution would be of advantage such as
a communication device that allows to exchange messages at any time. The hardware of modules
is actually able to accommodate a WiFi—device that could be used to regularly exchange messages
for the task of finding a partner, whereas the IR-transceivers could still be used to estimate the
bearing.

Furthermore, the algorithm itself is as well still to be improved. On the one hand, it is not guaran-
teed to find the maximum matching of a given configuration. Therefore, in a worst case scenario
multiple modules might be left over although a better or even a perfect matching exists. One
possible solution, Edmonds’s algorithm [3], was given but it relies on global knowledge of the con-
figuration, which violates the criterion of scalability. On the other hand, it can neither be ensured
that the entire configuration remains connected after modules dock to each other preventing them
from any [urther coordination of their actions. In this context it would also be of interest to fur-
ther investigate what failures can be traced back to flaws in the algorithm and what is due to the
unreliability of the IR—communication.
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Eventually, the final goal is to not only assemble modules in pairs but also in larger, arbitrary
structures. Based on the current work a strategy similar to a building block strategy is envisioned
where two pairs first build a sub—cluster of four modules and those build sub—clusters of eight and
so on until the final structure is achieved. To carry out this task, an assembly planer is necessary
since it then matters how modules dock to each other. Moreover, we will need to refine the method
to estimate the bearing of others to account for any arbitrary sub—cluster of which the bearing
must be estimated. Similarly, the procedure of aligning/orientating modules has to be reconsidered
because the alignment process then includes a translational part, however, as stated before there
is currently no feedback on translational motion of modules.



Appendix A

Additional Experiments

In this chapter further experiments that were conducted with the DFA are shown. All experiments
are of similar type to what was presented in Chapter 4. Section A.1 shows more experiments

discussed (Section A.2) and finally more pairing experiments are shown in Section A.3.

A.1 Drive Experiments

Figure A.1 shows the results from five experiments where the module was supposed to rotate 90°.
It can be seen that the module does not always rotate too far as for the case of 360°. Also, the
error in the onboard estimation of the orientation angle is below the average error after rotating
360°. This further reinforces the assumption that the gyroscope starts drifting during rotation.
Since modules rotated less in this set of experiments, the error is also less. Note that the error is
again almost identical in four out of five cases and shifted by about 2° in the fifth case.

The second set of five experiments presented here is shown in Figure A.2 where modules again
were supposed to translate for 1m but in a different direction (y instead of x). The results are
very similar to what could be observed in the other experiments.
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| Final orientation angle [°]  Error to desired orientation angle [°]

1 87.69 -2.31
2 89.75 —0.25
3 90.24 0.24
4 89.67 —0.33
5 91.86 1.86

Table A.1: The final orientation angle and the error to the desired orientation angle for the
conducted experiments is shown (ground truth data). In all experiments the module was supposed
to rotate 90°.

Error of onboard orientation estimation when rotating for 90°

—Experiment 1
—Experiment 2
m -y Experiment 3
2+ —Experiment 4
—Experiment 5

2.5

T

0.5

N
(}
;

Error of estimation [°]
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o
(9]
T

- 1 Il Il Il Il Il Il Il Il 1

0 1 2 3 4 5 6 7 8 9
Time s]

Figure A.1: The onboard estimation is compared to the actual orientation and the error is evalu-
ated. In each experiment the module is supposed to rotate 90°. A positive error corresponds to
an underestimated angle.
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Figure A.2: In all five experiments shown above the module was supposed to move 1m in

y—direction (body frame) without rotating. The initial position and orientation was taken to

Orientation angle when translating in y—direction

be 0. In the top plot the orientation of the module during the experiment is shown. The break in
the curve corresponds to the moment when the module starts moving. In the middle the error of
the onboard orientation estimation is shown and the lower plot displays the position of the module.
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A.2. Collision Detection

A.2 Collision Detection

The second set of collision experiments is shown in Figure A.3. All collisions could be detected

and there was no false detection.
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Figure A.3: For each experiment the peak acceleration (norm of x and y acceleration) is shown as
well as the third highest value (threshold value) and the average noise. It is distinguished between
an approaching module (upper plot) and a module that is standing still when the collision occurs
(lower plot). All threshold values were above the chosen threshold.
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A.3 Pairing Experiments

Ten additional experiments were conducted where four modules were supposed to pair up and dock
as well as five experiments with five modules to pair up, see Table A.2 and Table A.3. Results
are similar to what was seen before. Another source of error that did not arise so far was twice a
wrongly calibrated gyroscope. This prevented the module from accurately estimating the bearing
of its partner and then driving towards the partner. Also one time the IR—communication was so
unreliable that none of the modules found a partner. When the same experiment was repeated all
modules did find a partner.

| Successful pairs Tterations Time to finish  Additional comments

2 58s
1 2 2 53s
1 32s
2 2 1 34s
. 2 568
3 2 2 H7s
1 33s
4 2 3 1 min 22s
1 28s to failure  No pair was found due to bad IR-
5 0 . .
1 28 to failure communication.
2 58s Same setup as experiment 5 but two
6 1 2 50s to failure pairs were found this time. Pair 2 did
not dock due to a wrongly calibrated
gyroscope.
4 1min 45s One collision was not detected. Mod-
7 1 3 1min to failure ules crossed each other and one pair lost
sight.
1 34s
8 2 2 1 min
1 33s
) 2 2 57s
3 1min 20s Two pairs were found but pair 2 did not
10 1 3 1min to failure dock due to a wrongly calibrated gyro-
scope.

Table A.2: Ten experiments with four modules that were supposed to pair up were conducted.
Kach row corresponds to one experiment and states how many pairs successfully docked to each
other, how many iterations it took each pair as well as what was the finishing time. Reasons why
not all modules paired up and further comments can be found in the last column.
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| Successful pairs TIterations Time to finish  Additional comments

1 32s
1 2 1 36s
1 33s
12 2 1 33s
. 1 33s
13 2 2 57s
1 33s
14 2 1 39s

2 565 Pair 1 docked on the wrong port after

15 1 1 285 to failure  bad bearing estimation. No other pair

was found

Table A.3: Five experiments with five modules that were supposed to pair up were conducted.
One module should be left over therefore. Fach row corresponds to one experiment and states
how many pairs successfully docked to each other, how many iterations it took each pair as well
as what was the finishing time. Reasons why not all modules paired up and further comments can
be found in the last column.
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