
LOST IN PRUNING: THE EFFECTS OF PRUNING NEURAL NETWORKS
BEYOND TEST ACCURACY

Lucas Liebenwein 1 Cenk Baykal 1 Brandon Carter 1 David Gifford 1 Daniela Rus 1

ABSTRACT
Neural network pruning is a popular technique used to reduce the inference costs of modern, potentially overparam-
eterized, networks. Starting from a pre-trained network, the process is as follows: remove redundant parameters,
retrain, and repeat while maintaining the same test accuracy. The result is a model that is a fraction of the size of
the original with comparable predictive performance (test accuracy). Here, we reassess and evaluate whether the
use of test accuracy alone in the terminating condition is sufficient to ensure that the resulting model performs well
across a wide spectrum of "harder" metrics such as generalization to out-of-distribution data and resilience to noise.
Across evaluations on varying architectures and data sets, we find that pruned networks effectively approximate
the unpruned model, however, the prune ratio at which pruned networks achieve commensurate performance
varies significantly across tasks. These results call into question the extent of genuine overparameterization in deep
learning and raise concerns about the practicability of deploying pruned networks, specifically in the context of
safety-critical systems, unless they are widely evaluated beyond test accuracy to reliably predict their performance.
Our code is available at https://github.com/lucaslie/torchprune.

1 INTRODUCTION

Deep neural networks (Russakovsky et al., 2015; You et al.,
2019) tend to contain millions or billions of parameters,
necessitating costly computational resources in order to
train and deploy them in practice, and motivating the need
to develop compact networks with fewer parameters (Han
et al., 2015; Liebenwein et al., 2020). Such a reduction
in parameter count alleviates the computational burden on
training and inference, making it easier to deploy high-
capacity models to small devices and use them in resource-
constrained environments (Baykal et al., 2019a; Frankle &
Carbin, 2019; Renda et al., 2020).

To this end, network pruning is a popular technique used
to obtain compact networks that maintain the accuracy of
the original network with orders of magnitude of fewer
parameters (Blalock et al., 2020; Gale et al., 2019). Typical
pruning algorithms either proceed by gradually pruning the
network during training (Gale et al., 2019; He et al., 2018;
Zhu & Gupta, 2017) or by pruning the network after training
followed by a retraining period (Baykal et al., 2019b; Han
et al., 2015; Liebenwein et al., 2020; Renda et al., 2020).

A prune pipeline with retraining usually consists of the

1Computer Science and Artificial Intelligence Lab, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA. Corre-
spondence to: Lucas Liebenwein <lucasl@mit.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

following steps:

1. Prune weights (“unstructured pruning”) or fil-
ters/neurons (“structured pruning”) from the trained
network according to some criterion of importance;

2. Retrain the resulting network to regain the full accuracy;
3. Iteratively repeat steps 1 & 2 to further reduce the size.

These approaches are both simple and network-agnostic,
and have been shown to yield state-of-the-art pruning results
for both unstructured (Renda et al., 2020) and structured
pruning (Liebenwein et al., 2020). For example, these tech-
niques enable pruning of 89% of the weights (Renda et al.,
2020) or 84% of the filters (Liebenwein et al., 2020) of a
ResNet56 trained on CIFAR10.

While the ability to prune large portions of a network is
not obvious at first sight, common wisdom attributes the
apparent overparameterization (Arora et al., 2018; Baykal
et al., 2019a; Du et al., 2019; Frankle & Carbin, 2019) of
modern deep learning architectures as one of the key reasons
why pruning such large portions of the network is possible
without harming the performance of the network.

In other words, successfully pruning a network entails iden-
tifying and removing the redundant parameters. Moreover,
starting from a pre-trained, overparameterized network with
good performance (as opposed to a small, randomly initial-
ized network) ensures that the pruned network maintains the
same level of performance as its uncompressed counterpart.

In this paper, we revisit these common assumptions and
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rigorously assess how pruning using state-of-the-art prune-
retrain techniques (Baykal et al., 2019b; Liebenwein et al.,
2020; Renda et al., 2020) affects the function represented by
a neural network, including the similarities and disparities
exhibited by a pruned network with respect to its unpruned
counterpart.

We formalize the notion of (functional) similarities between
networks by introducing novel types of classification-based
functional distance metrics. Using these metrics, we test
the hypothesis that pruned models are (functionally) similar
to their (unpruned) parent network and can be reliably dis-
tinguished from separately trained networks. We term the
network’s ability to be pruned for a particular task without
performance decrease its prune potential, i.e., the maximal
prune ratio for which the pruned network maintains its orig-
inal performance, and test a network’s prune potential under
various tasks. The prune potential provides insights into the
amount of overparameterization the network exhibits for a
particular task and thus serves as a useful indicator of how
much of the network can be safely pruned.

Our findings. We find that the pruned models are func-
tionally similar to the uncompressed parent model, which
enables us to distinguish the parent of a pruned network for
a range of prune ratios. Despite the similarity between the
pruned network and its parent, we observe that the prune
potential of the network varies significantly for a large num-
ber of tasks. That is, a pruned model may be of similar
predictive power as the original one when it comes to test
accuracy, but may be much more brittle when faced with out
of distribution data points. This raises concerns about de-
ploying pruned models on the basis of accuracy alone, in par-
ticular for safety-critical applications such as autonomous
driving (Schwarting et al., 2020), where unforeseen, out-
of-distribution, or noisy data points commonly arise. Our
insights, which hold even when considering robust training
objectives, underscore the need to consider task-specific
evaluation metrics during pruning, prior to the deployment
of a pruned network to, e.g., safety-critical systems. These
results also question the common assumption that there ex-
ists a significant amount of “redundant” parameters to begin
with and provide a robust framework to measure the amount
of genuine overparameterization in networks.

Guidelines. Based on these observations we formulate a
set of easy-to-follow guidelines to pruning in practice:

1. Don’t prune if unexpected shifts in the data distribution
may occur during deployment.

2. Prune moderately if you have partial knowledge of the
distribution shifts during training and pruning.

3. Prune to the full extent if you can account for all shifts
in the data distribution during training and pruning.

4. Maximize the prune potential by explicitly considering
data augmentation during retraining.
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Figure 1: A network’s ability to be pruned without loss
of accuracy, i.e., its “prune potential”, can be significantly
affected by small changes in the input data distribution.

Contributions.

• We propose novel functional distance metrics for
classification-based neural networks and investigate the
functional similarities between the pruned network and
its unpruned counterpart.

• We propose the notion of prune potential, i.e., the max-
imal prune ratio (model sparsity) at which the pruned
network can achieve commensurate performance, as a
quantifiable means to estimate the overparameterization
of a network and show that it is significantly lower on
challenging inference tasks.

• We provide a unified framework to establish task-
specific guidelines that help practitioners assess the
effects of pruning during the design and deployment
of neural networks in practice.

• We conduct experiments across multiple data sets, archi-
tectures, and pruning methods showing that our obser-
vations hold across common pruning benchmarks and
real-world scenarios.

2 RELATED WORK

Pruning. Generally, pruning is categorized into unstruc-
tured (Han et al., 2015) and structured (He et al., 2018; Li
et al., 2019) pruning approaches. While the former is bene-
ficial for research, it provides little computational speed-ups
compared to structured pruning (Luo & Wu, 2018). More-
over, pruning can be performed before (Lee et al., 2019;
Tanaka et al., 2020; Wang et al., 2020), during (Kusupati
et al., 2020; Yu et al., 2018; Zhu & Gupta, 2017), or af-
ter training (Baykal et al., 2019b; Liebenwein et al., 2020;
Singh & Alistarh, 2020), and repeated iteratively (Renda
et al., 2020). In this work, we focus on iterative pruning with
retraining after training. While computationally more expen-
sive than other approaches, this pruning pipeline produces
state-of-the-art results, is usually architecture-agnostic, and
requires little hyperparameter tuning, thus providing a sim-
ple and effective baseline for our experiments. A thorough
overview of recent pruning approaches is, e.g., provided by
Blalock et al. (2020); Gale et al. (2019); Liu et al. (2019).
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Robustness. Our work builds on and extends previous
work that investigates the robustness of pruned networks.
The works of Gamboa et al. (2020); Guo et al. (2018); Wang
et al. (2018); Ye et al. (2019); Zhao et al. (2018) have inves-
tigated the effect of adversarial input on pruned networks,
however, the resulting evidence is inconclusive. While Gam-
boa et al. (2020); Guo et al. (2018) report that adversarial
robustness may improve or remain the same for pruned
networks, Wang et al. (2018); Ye et al. (2019); Zhao et al.
(2018) report decreased robustness for pruned networks. Re-
cently, the work of Hooker et al. (2019) investigated at the
individual image level whether certain class accuracies are
more affected than others. In contrast to prior work, we in-
vestigate both the functional similarities of pruned networks
and the task-specific prune potential. Our work highlights
the need to assess pruned networks across a wide variety
of tasks to safely deploy networks due to the unpredictable
nature of a network’s prune potential.

Robust training and pruning. Recent works (Dhillon
et al., 2018; Wijayanto et al., 2019) have investigated
pipelines that incorporate pruning and robust training to
obtain simultaneously sparse and robust networks. Gui et al.
(2019); Sehwag et al. (2019) use magnitude-based prun-
ing (Han et al., 2015) to train sparse, robust networks, while
the work of Sehwag et al. (2020) incorporates the robust-
ness objective into an optimization-based pruning procedure.
Our work offers a complementary viewpoint to the findings
of prior work in that we can indeed efficiently train pruned
networks that are (adversarially) robust. However, for the
first time we make the crucial observation that pruned net-
works are disproportionally more affected by distributional
changes in the input regardless of the training procedure.

Generalization via pruning. Among others Arora et al.
(2018); Baykal et al. (2019a); Nagarajan & Kolter (2019);
Zhou et al. (2018) have demonstrated that (provable) prun-
ing can facilitate tighter generalization bounds of networks.
Pruning is hereby viewed as a form of noise injection into
the network and by quantifying the (unpruned) network’s
ability to withstand random noise, they characterize the prun-
ability of the network to establish generalization bounds.
However, these works do not capture the generalization abil-
ity of pruned networks under distributional changes. Here,
we show that as a result of pruning, the network’s ability to
withstand noise and other types of data corruption is dimin-
ished. In other words, the network’s robustness is “traded”
in exchange for compactness.

Implicit regularization via overparameterization. Our
work is also related to the beneficial role of overparameteri-
zation in deep learning (Allen-Zhu et al., 2019; Zhang et al.,
2016). Conventional wisdom (Du et al., 2019; Neyshabur
et al., 2015; 2018; 2019) states that stochastic gradient meth-
ods used for training implicitly regularize the network, in

effect ensuring it generalizes well despite the potential to
severely overfit. Moreover, the works of Belkin et al. (2019);
Nakkiran et al. (2020) note that the implicit regularization
potential increases with the parameter count. Our work, for
the first time, thoroughly establishes that pruned networks
distinctly suffer more from small shifts in the input data
distribution compared to unpruned networks – possibly due
to the decreased implicit regularization potential as a re-
sult of the lower parameter count. Our findings concretely
highlight that explicit regularization in the form of robust
training can help regain some of the robustness properties
that would otherwise be lost.

3 METHODOLOGY

3.1 Pruning Setup

For our experiments, we consider a variety of network archi-
tectures, data sets, and pruning methods as outlined below.
Our pruning pipeline, see Algorithm 1, is based on iterative
pruning and retraining following Renda et al. (2020). It is
simple, network-agnostic, and widely used; hence we opted
to choose it as representative pruning pipeline.

Data sets and network architectures. We consider CI-
FAR10 (Torralba et al., 2008), ImageNet (Russakovsky
et al., 2015), and Pascal VOC segmentation data (Ever-
ingham et al., 2015) as data sets. We consider ResNets
18/56/110 (He et al., 2016), WRN16-8 (Zagoruyko & Ko-
modakis, 2016), DenseNet22 (Huang et al., 2017), and
VGG16 (Simonyan & Zisserman, 2015) on CIFAR10;
ResNet18 and 101 (He et al., 2016) on ImageNet; and a
DeeplabV3-ResNet50 (Chen et al., 2017) on VOC.

Training. For all networks, we apply the standard training
parameters as indicated in the respective papers. We apply
the linear scaling rule of Goyal et al. (2017) when training
on multiple GPUs in parallel including warm-up. All hyper-
parameter settings with their numerical values are listed in
Appendix B. All networks are trained once to completion
before pruning (Line 2 of Algorithm 1).

Pruning. We consider multiple unstructured and struc-
tured pruning methods, where we prune individual weights
and filters/neurons, respectively, see Table 1 for an overview.
We perform pruning by updating a binary mask indicating
whether the corresponding weight is active or pruned (Line 5
of Algorithm 1).

Unstructured pruning. The weight pruning approaches
we consider follow a global pruning strategy: (1) globally
sort the weights according to their relative importance, i.e.,
sensitivity, and (2) prune rprune% of the weights with the
lowest sensitivity. In particular, we study two methods
to compute the sensitivity of weights, weight threshold-
ing (Renda et al., 2020) and SiPP (Baykal et al., 2019b).
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Type Method Data-informed Sensitivity Scope
Unstructured WT: Weight Thresholding (Renda et al., 2020) 7 |Wij | Global

(Weights) SiPP: Sensitivity-informed Pruning (Baykal et al., 2019b) X ∝ |Wijaj(x)| Global
Structured FT: Filter Thresholding (Renda et al., 2020) 7 ‖W:j‖1 Local

(Neurons/Filters) PFP: Provable Filter Pruning (Liebenwein et al., 2020) X ∝ ‖W:ja(x)‖∞ Local

Table 1: Overview of the pruning methods evaluated. Here, a(x) denotes the activation of the corresponding layer with
respect to a sample input x to the network.

Weight thresholding (WT) is a simple heuristic, originally
introduced by Han et al. (2015) and re-purposed by Renda
et al. (2020), that defines the sensitivity of a weight as the
magnitude of the weight. SiPP, on the other hand, is a data-
informed approach with provable guarantees to computing
weight sensitivities (Baykal et al., 2019b). The approach
uses a small batch of input points S ⊆ P , e.g., from the
validation set, to evaluate the saliency of each network pa-
rameter. This is done by incorporating the corresponding
(sample) activations, a(x), x ∈ S, along with the weight
into the importance computation (see Table 1).

Algorithm 1 PRUNERETRAIN(ncycles, rprune, ntrain, ρtrain)
Input: ncycles: number of prune-retrain cycles; rprune: relative
prune ratio; ntrain: number of train epochs; ρtrain: training hyper-
parameters
Output: c: pruning mask, θ: parameters of the pruned network
1: θ0 ← RANDOMINIT()
2: θ ← TRAIN(θ0, ntrain, ρtrain)
3: c← 1|θ0| . binary mask for the parameters
4: for i ∈ [ncycles] do
5: c← PRUNE(c�θ, rprune) . Prune rprune% of the remain-

ing parameters.
6: θ ← TRAIN(c� θ, ntrain, ρtrain)
7: end for
8: return c, θ

Structured pruning. The filter/neuron pruning ap-
proaches we consider follow a two-step strategy: (1) allocate
a per-layer prune ratio satisfying the overall prune ratio and
(2) prune the filters with lowest sensitivity in each layer.
We study Filter Tresholding (FT) as used by Renda et al.
(2020) and PFP (Liebenwein et al., 2020). FT, as originally
introduced by He et al. (2018); Li et al. (2016) and used
here analogous to Renda et al. (2020), uses the filter norm
to evaluate its sensitivity. Layer allocation is performed
manually and we deploy a uniform prune ratio across layers
to avoid further hyperparameters. PFP (Liebenwein et al.,
2020) is an extension of SiPP that evaluates filter sensitivity
as the maximum sensitivity of the channel in the next layer
(`∞-norm of the corresponding weight sensitivity). PFP
uses the associated theoretical error guarantees to optimally
allocate the layer-wise budget.

Retraining. We retrain the network with the exact train-
ing hyperparameters as is common (Baykal et al., 2019b;
Liebenwein et al., 2020; Renda et al., 2020). Specifically,
we re-use the same learning rate schedule and retrain for
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Figure 2: The accuracy of the generated pruned models
for the evaluated pruning schemes for various target prune
ratios using iterative fine-tuning.

the same amount of epochs (Line 6 of Algorithm 1). After
retraining, we iteratively repeat the pruning procedure to
obtain even smaller networks (Lines 4-7 of Algorithm 1).

Prune results. Figure 2 shows an exemplary test accuracy
curve of a Resnet20 (CIFAR10) across different target prune
ratios for iterative pruning. The remaining prune results are
summarized in the supplementary material. We note while
PRUNERETRAIN may be more computationally expensive
than other pruning pipelines, it is network-agnostic and pro-
duces state-of-the-art pruning results (Renda et al., 2020).

3.2 Experiments Roadmap

Our observations stem from multiple experiments that can
be clustered into one set of experiments pertaining to under-
standing the functional similarities (i.e., functional distance)
of pruned networks and one set pertaining to the prune po-
tential on a variety of image-based classification tasks. First,
we compare subsets of pixels that are sufficiently informa-
tive for driving the network’s decision. For this, we use
the feature-wise (pixel-wise) selection mechanism of Carter
et al. (2019; 2020). We also investigate how pruned net-
works behave under `∞-bounded random noise. Second, we
assess the ability of pruned networks to generalize to out-of-
distribution (o.o.d.) test data sets that contain random noise
(`∞-bounded) and common corruptions (Hendrycks & Di-
etterich, 2019; Recht et al., 2018; 2019) including weather,
contrast, and brightness changes. In all experiments, we
compare the performance, i.e., the accuracy on the various
test sets, of pruned networks with those of their unpruned
counterparts as well as a separately trained unpruned net-
work. Each experiment is repeated 3 times and we report
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mean and standard deviation (error bars). In the main part
of the paper, we focus on a subset of representative results
to highlight the key findings. We refer the interested reader
to the appendix for a complete exposition of our results.

4 FUNCTION DISTANCE

Given a pruned model with commensurate test accuracy rela-
tive to the parent (uncompressed) network, can we conclude
that the function represented by the pruned model is similar
to the parent network for unforeseen data points? In this
section, we investigate the extent to which the pruned and
parent model are functionally similar under two distinct met-
rics: informative features and noise resilience. Our findings
show that pruned networks are more functionally similar to
their original network than a separately trained, unpruned
network underscoring the intuition that pruned networks
remain functionally similar to their unpruned counterpart.

4.1 Methodology

Comparison of informative features. We compare fea-
tures (pixels) that are informative for the decision-making
of each model. Specifically, for a network fθ(x) with pa-
rameters θ and input x ∈ Rn we want to find an input mask
m ∈ {0, 1}n such that fθ(x) ≈ fθ(m� x), i.e.,

m = argmin
‖m‖0≤(1−B)n

‖fθ(x)− fθ(m� x)‖ (1)

for some sparsity level B. To approximately solve equa-
tion 1 we use the greedy backward selection algorithm
(BackSelect) of Carter et al. (2019; 2020). The pro-
cedure iteratively masks the least informative pixel (i.e., the
pixel which if masked would reduce the confidence of the
prediction of the correct label by the smallest amount) to ob-
tain a sorting of the pixels in order of increasing importance.
After sorting, we can remove the bottom B% of pixels.

Given two networks fθ(·) and fθ̂(·), we can then measure
the difference between the functions by switching up the
respective input masks m and m̂ to see the change in the
output, i.e., ‖fθ(m̂� x)− fθ(m� x)‖ and vice versa. If
one model can make a confident and correct prediction on
the pixels that were informative to another model, the mod-
els may have similar decision-making strategies. We apply
this strategy to identify subsets of informative pixels across
a sample of 2000 CIFAR-10 test images. For each image,
we compute the subset of informative pixels, i.e., the input
mask m, for an unpruned network, five pruned networks
(of increasing prune ratio) derived from that network, and
a separate, unpruned network of the same type. We probe
whether the informative pixels from one model are also
informative to the other models for a sparsity level of 90%.

Noise similarities. We consider injecting l∞-bounded,
random noise into the test data and we compare the predicted

Figure 3: Confidence heatmaps on informative pixels from
WT-pruned ResNet20s. Y-axis is the model used to generate
the informative pixel subset toward the predicted class, x-
axis describes the models evaluated with the subset, cells
indicate mean confidence toward the true class.
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Figure 4: The functional similarities between WT-pruned
ResNet20 models measured by considering (a) the percent-
age of matching predictions, (b) the difference in the soft-
max output after injecting noise into the input. Pruned
networks are more similar.

labels between the pruned networks and their unpruned
counterpart to investigate the behavior in local neighborhood
of points. Specifically, for two networks fθ(·) and fθ̂(·) with
parameters θ and θ̂, respectively, we consider the expected
number of matching label prediction and the expected norm
difference of the output with noise ε, i.e.,

E x′∼D+Un(−ε,ε)
[
argmax fθ(x

′) = argmax fθ̂(x
′)
]

and
E x′∼D+Un(−ε,ε)

∥∥fθ(x′)− fθ̂(x′)∥∥2 ,
respectively. We test the noise similarity of networks for a
random subset of 1000 test images for 100 repetitions of
random noise injection and average over the results.

4.2 Results

Comparison of informative features. Figure 3 shows
heatmaps of mean confidence on masked images contain-
ing only the 10% most informative features as ordered by
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BackSelect from an unpruned network (ResNet20 on
CIFAR-10), five WT-pruned networks, and a separate, un-
pruned network. For each masked image containing only
the informative features (found with respect to the predicted
class), we evaluate the confidence toward the true class for
all models to reveal whether such features are informative
to the other models. We find features informative to the
unpruned network suffice for confident predictions by the
pruned networks derived from it, but do not suffice for pre-
diction by the separate, unpruned network. We also find that
informative features from pruned networks can be used for
prediction by the original network, suggesting these mod-
els employ a similar decision-making process. In general,
our results suggest weight-pruned networks maintain higher
confidence on parent features than do filter-pruned networks
(see Appendix C.1). For models pruned beyond commen-
surate accuracy (PR = 0.98 in Figure 3), the informative
features are no longer predictive under any other model.

Noise similarities. In Figure 4a the percentage of match-
ing label predictions of WT-pruned ResNet20 networks are
shown with respect to their unpruned counterpart for multi-
ple noise levels. We can conclude that the predictions of the
pruned networks tend to correlate with the predictions of the
unpruned parent – clearly more than the predictions from
a separately trained, unpruned network. We also consider
the overall difference in the `2-norm between pruned and
unpruned networks of the softmax output where we observe
similar trends, see Figure 4b. These results indicate that the
decision boundaries of the pruned network tend to remain
close to those of the unpruned network implying that during
retraining properties of the original function are maintained.
We note that the correlation decreases as we prune more
corroborating our intuitive understanding of pruning.

5 PRUNING UNDER DISTRIBUTION
CHANGES

We highlighted that pruned networks behave functionally
similarly, however, ultimately the performance is measured
in terms of the loss or accuracy on previously unseen data.
In this section, we investigate how pruned networks behave
in the presence of shifts in the data distribution, including
noise, weather, and other corruptions. While it is commonly
known that out-of-distribution (o.o.d.) data can harm the
performance of neural networks (Madry et al., 2018), we
specifically investigate whether pruned network suffer dis-
proportionately more from o.o.d. data compared to their
parent network. Answering this question affirmatively has
profound implications on the practical deployment of pruned
networks, specifically for safety-critical systems.

To this end, we define a network’s prune potential to be the
maximal prune ratio for which the pruned network achieves
similar loss (up to margin δ) compared to the unpruned one

for data sampled from distribution D.

Definition 1 (Prune Potential). Given a neural network
fθ(x) with parameters θ, input-label pair (x, y) ∼ D, and
loss function `(·, ·) the prune potential P (θ,D) for some
margin δ is given by

P (θ,D) = maxc∈{0,1}|θ| 1− ‖c‖0/‖θ‖0
subject to (2)

E (x,y)∼D
[
`(y, fc�θ̂(x))− `(y, fθ(x))

]
≤ δ,

where ‖·‖0 denotes the number of nonzero elements, and c
and θ̂ denote the prune mask and parameters, respectively,
obtained from PRUNERETRAIN (Algorithm 1).

The prune potential P(θ,D) thus indicates how much of
the network can be safely pruned with minimal additional
loss incurred. In other words, it indicates to what degree the
pruned network can maintain the performance of the parent
network. As an additional benefit the prune potential may
act as a robust measure to gauge the overparameterization
of a network in the presence of distribution shifts.

Moreover, we define a network’s excess loss to be the ad-
ditional loss incurred under distributional changes of the
input.

Definition 2 (Excess Loss). Given a neural network fθ(·)
with parameters θ, training distribution D from which we
can sample input-label pairs (x, y) ∼ D, test distribution
D′ from which we can also sample input-label pairs, and
loss function `(·, ·), the excess loss e(θ,D′) is given by

e(θ,D′) = E
(x′,y′)∼D′

`(y′, fθ(x
′))− E

(x,y)∼D
`(y, fθ(x)).

The excess loss hereby indicates the expected performance
drop of the network for distribution changes, which we can
evaluate for various unpruned and pruned parameter sets for
a given network architecture to understand to what extend
the excess loss varies.

5.1 Methodology

We choose test error (indicator loss function) to evaluate the
prune potential and excess loss (excess error). We evaluate
the constraint of (2) for a margin of δ = 0.5%.

We compare the prune potentials p = P (θ,D) and p′ =
P (θ,D′) for two distributions D and D′ to assess whether
pruning up to the prune potential p implies that we can also
safely prune up to p forD′. Specifically, the difference p−p′
in prune potential can indicate how much the prune potential
varies and thus whether it is safe to prune the network up to
its full potential p when the input is instead drawn from D′.
We note that in practice we may only have access to D but
not D′. Thus in order to safely prune a network up to some
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prune ratio p it is crucial to understand to what degree the
prune potential may vary for shifts in the distribution.

We also compare the excess error e = e(θ,D′) and ê =

e(c� θ̂,D′) for an unpruned and pruned network with pa-
rameters θ and c� θ̂, respectively. Note that the difference
in excess error, ê−e, quantifies the additional error incurred
by a pruned network under distribution changes compared
to the additional error incurred by an unpruned network.
Ideally, the difference ê− e should be zero across all prune
ratios, which would imply that the prune-accuracy trade-off
for nominal data is indicative of the trade-off for o.o.d. data.

We evaluate the prune potential and excess error using nom-
inal test data (train distribution D) and o.o.d. test data (test
distribution D′). Specifically, we consider o.o.d. data with
random noise following Section 4.1, and o.o.d. data cor-
rupted using state-of-the-art corruption techniques, i.e., CI-
FAR10.1 (Recht et al., 2018), CIFAR10-C (Hendrycks &
Dietterich, 2019) for CIFAR10; ObjectNet (Barbu et al.,
2019), ImageNet-C (Hendrycks & Dietterich, 2019) for
ImageNet; and VOC-C (Michaelis et al., 2019) for VOC.
For CIFAR10-C, ImageNet-C, VOC-C we choose severity
level 3 out of 5. The prune potential is evaluated separately
for each corruption while the excess error is evaluated by
averaging over all corruptions (test distribution).

5.2 Results

Noise. We evaluated the prune potential of a ResNet20
(CIFAR10) for various noise levels, the results of which are
shown in Figure 1. Initially, the network exhibits high prune
potential, similar to the prune potential on the original test
data (noise level 0.0). However, as we increase the noise
injected into the image the prune potential rapidly drops
to 0%. As shown in Appendix D.1 most networks’ prune
potential based on noise exhibit similar properties. This is
particularly discomforting as the noise does not deteriorate
a human’s ability to classify the images correctly as can
be seen from Figure 5. These results highlight we may
not be able to significantly prune networks if maintaining
performance on slightly harder data is the goal.

Prune-accuracy curves for corruptions. Separately, we
investigated the prune potential for image corruptions based
on the CIFAR10-C, ImageNet-C. In Figures 6a and 6d we
show the test accuracy of pruned networks across various
target prune ratios for a subset of CIFAR10-C corruptions
for a ResNet20 pruned with WT and FT, respectively. In
particular, for some simpler corruptions, such as Jpeg, the
prune-accuracy curves closely resembles the original CI-
FAR10 curve, while for metrics such as Speckle and Gauss
the curve indicates a noticeable accuracy drop across all
target prune ratios. Moreover, the prune-accuracy curve
becomes more unpredictable and less stable as indicated by
the significantly higher variance of the resulting accuracy.

Figure 5: Example images from the CIFAR10 test dataset
that were used in this study with various levels of noise
injected. A human test subject can classify the images
equally well despite the noise present.

We thus conclude that the achievable accuracy of the net-
work depends on the pruning method and the target prune
ratio, however, we observe an equally strong dependence on
the chosen test metric. Consequently, this affects the prune
potential of the network highlighting the sensible trade-off
between generalization performance and prune potential.

Prune potential for corruptions. For each corruption
we then extracted the resulting prune potential from the
prune-accuracy curves, see Figures 6b and 6e for weight
pruning and filter pruning, respectively. In particular, for
corruptions, such as Gauss, Impulse, or Shot, we observe
that the network’s prune potential hits (almost) 0% implying
that any form of pruning may adversely affect the network’s
performance under such circumstances. We repeated the
same experiment for a ResNet18 trained on ImageNet and
tested on ImageNet-C, see Figure 7. Noticeably, the network
exhibits significantly higher variance in the prune potential
across different corruptions compared to the networks tested
on CIFAR10. This effect is also more pronounced for filter
pruning methods. In Appendix D.2, we provide results
for additional networks for both CIFAR10 and ImageNet
corroborating our findings presented here.

Choice of δ. We additionally investigate how the prune
potential is affected by our choice of δ (see Appendix D.4).
While the actual value of the prune potential is naturally
affected by δ, we find that our observations of the result-
ing trends remain unaffected by our particular choice of
δ. Hence, we simply choose δ = 0.5% uniformly across
all experiments reflecting the requirement that our pruned
network should be close in accuracy to the parent network
while allowing some slack to increase the prune potential.

Excess error. In contrast to the prune potential, the differ-
ence in excess error enables us to quantify across multiple
prune ratios how much additional error is incurred by the
pruned network on top of the unpruned network’s excess
error when tested on o.o.d. data. A non-zero difference thus
indicates how the prune-accuracy curve changes under dis-
tribution changes. In other words, the difference in excess
error quantifies the difference in error between the pruned
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Figure 6: The prune potential for a ResNet20 on CIFAR10-C test datasets. We observe that depending on the type of
corruption the network has significantly less prune potential than when measured w.r.t. the nominal CIFAR10 test accuracy.

and unpruned network on top of the difference in error that
is incurred for nominal test data (train distribution).

We evaluated the difference in excess error between pruned
and unpruned ResNet20s trained on CIFAR10 for various
prune ratios (see Figures 6c, 6f). Note that by definition the
excess error is 0% for a prune ratio of 0%. We observe that
the difference in excess error can reach upwards of 2% and
3% for weight and filter pruning, respectively. Moreover,
the higher the prune ratio the more variance we can observe
indicating that the pruned network’s behavior becomes less
predictable overall. These observations strongly indicate
that pruned networks suffer disproportionally more from
o.o.d. data across a wide spectrum of prune ratios and that
the additional performance drop on o.o.d. data is positively
correlated with the prune ratio. In other words, while cur-
rent pruning techniques achieve commensurate accuracy for
high prune ratios on nominal test data, the same pruning
techniques do not maintain commensurate accuracy for even
small prune ratios on o.o.d. test data. Additional results are
presented in Appendix D.5.

Measuring overparameterization. The results presented
so far in this section highlight that the prune potential on
nominal test data does not reliably indicate the overall per-
formance of the pruned network. This may lead to novel
insights into understanding the amount of overparameteri-

zation in deep networks. In Appendix D.6, we summarize
the prune potential across all tested data distributions and
networks as a way to gauge the amount of overparameter-
ization of a network. A subset of the results are shown
in Table 2. While some networks’ prune potentials are
significantly affected by changes in the distribution, other
networks’ prune potentials are virtually unaffected. Take
for example the weight prune potential on nominal test data
(training distribution) of a VGG16 and a WRN16-8, which
is around 98% for both. However, when both networks are
evaluated on o.o.d. test data (test distribution) they exhibit
distinctly different behaviors. While the WRN16-8’s prune
potential remains fairly stable at around 95% (3% drop), the
VGG16’s prune potential falls to 80% (18% drop).

Overall, these results illustrate the fact that the prune po-
tential may act as a robust measure of a network’s genuine
overparameterization in theory, and may also be helpful
in informing the practitioner on the extent of pruning that
should be conducted prior to deployment in practice.

6 TOWARDS ROBUST PRUNING

Our experiments raise the question whether the decreased
performance of pruned networks is a limitation of our cur-
rent pruning and training techniques or whether it is an
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Figure 7: Prune potential of a ResNet18 (ImageNet).

Model Method Prune Potential (%)
Train Dist. Test Dist. Diff.

ResNet20 WT 84.9 ± 0.0 66.7 ± 3.3 -18.2
FT 65.0 ± 6.7 55.3 ± 4.8 -9.7

VGG16 WT 98.0 ± 0.0 80.9 ± 2.2 -17.1
FT 85.4 ± 2.4 66.3 ± 0.5 -19.1

WRN16-8 WT 98.0 ± 0.0 95.7 ± 0.7 -2.3
FT 86.2 ± 1.3 75.7 ± 4.1 -10.5

ResNet18 WT 85.8 63.6 -22.2
FT 13.7 13.5 -0.2

Table 2: The prune potential of various networks trained on
CIFAR10 (upper part) and ImageNet (lower part) evaluated
on the train and test distribution, which consist of nominal
data and the average over all corruptions, respectively.

inherent limitation of pruned, i.e., smaller, networks them-
selves. To this end, we investigated whether training (and
retraining) in a robust manner can benefit the pruned net-
work and minimize the effects we observed previously.

6.1 Methodology

To test the hypothesis that we can regain some of the ro-
bustness properties of the unpruned network we repeated
the experiments of Section 5 but during (re-)training we
incorporated a randomly chosen fixed subset of nine cor-
ruptions from CIFAR10-C and ImageNet-C into the data
augmentation pipeline. That is, every time we sample an
image from the train set during (re-)training we choose an
image corruption (or no corruption) uniformly at random to
corrupt the image effectively altering the train distribution
that the network sees. The remaining corruptions are not
used during training and make up the new test distribution.
Additional experimental details are provided in Appendix E.

6.2 Results

Prune-accuracy curves and prune potential. In Fig-
ure 8a we show the prune-accuracy curves for three corrup-
tions from the test distribution for WT-pruned ResNet20s.
Compared to the results in Figure 6a where we did not per-
form robust (re-)training we observe that the prune-accuracy
curves are much more stable and that the prune-accuracy
curve on nominal test data (CIFAR10) is more predictive
of the others. However, the results on the evaluation of the

prune potential as shown in Figure 8b for weight and filter
pruning reveal that even in this setting the prune potential
can be significantly lower (or exhibit high variation over
multiple trials) for some of the corruptions from the test
distribution. These observations further corroborate our
findings but also highlight the beneficial effects of robust
training in efficiently alleviating some of the short-comings
(see Appendix E for a complete exposition of the results).

Excess error. Similar trends can also be observed when
considering the difference in excess error as shown in Fig-
ure 8c. While we can reduce the correlation between prune
ratio and excess error, we can not entirely eliminate it. More-
over, we can still observe high variations in the excess error
confirming the sensible trade-off between generalization
performance and prune potential.

Implicit regularization. In this section, we show that
we can regain much of the prune potential even under dis-
tribution changes, at least when we can incorporate these
additional data points into our training pipeline. For ex-
ample, the weight prune potential for a ResNet20 for both
the nominal and robust training scenario is around 85%.
Consequently, we argue that both pruned and unpruned net-
works have sufficient capacity to represent the underlying
distribution given that the training is performed using an
appropriate optimization pipeline.

Specifically, previous work noted that overparameterized
networks may benefit from implicit regularization when
optimized with a stochastic optimizer and that more param-
eters amplify this effect. We can confirm these observations
in the sense that pruned networks suffer disproportionally
more from o.o.d. data than unpruned networks with more pa-
rameters. That is, unpruned network exhibit more implicit
regularization through SGD leading to more robustness.
However, we can regain some of the robustness properties
by adding explicit regularization during training in the form
of data augmentation. We can thus “trade” the implicit reg-
ularization potential which we lose by removing parameters
for explicit regularization through data augmentation.

Choice of test distribution. While our results suggest that
robust training indeed improves the generalization of pruned
networks for o.o.d. data, we would like to emphasize that
our conclusion intrinsically hinges upon on the choice of
train and test distribution. While we did strictly separate the
corruptions used during train and test time, these corruptions
can be loosely categorized into four types, i.e. noise, blur,
weather, digital, all of which are present in both the train and
test distribution. Therefore, we suspect that for significantly
different corruption models (or adversarial inputs) we may
observe more significant trade-offs resembling the results of
Section 5 where we performed nominal (re-)training. This is
a consequence of requiring additional explicit regularization
since the explicit regularization must be modeled.
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(c) Excess error (WT, FT)
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Figure 8: The prune potential of a ResNet20 shown for corruptions that were included (train distribution) and excluded (test
distribution) during training. The prune-accuracy curves in (a) are shown for corruptions from the test distribution.

7 DISCUSSION

Weight vs filter pruning. We find that across all tested
corruptions filter pruning methods are more error-prone and
have lower prune potential compared to weight pruning.
We conjecture this trend stems from the fact that structured
pruning is overall a harder problem, implying that struc-
turally pruned networks are less capable of maintaining the
properties of the parent network when compared to those
generated by weight-based pruning.

Genuine overparameterization. In light of our results
we conjecture that while the high capacity of modern net-
works may not be strictly necessary to achieve high test
accuracy – since pruned networks with commensurate ac-
curacy exist –, the "excess" capacity of these networks may
be beneficial to maintaining other crucial properties of the
network, such as its ability to perform well on unforeseen
or out-of-distribution data. This challenges the common
wisdom that modern networks are overparameterized and,
hence, contain redundant parameters that can be pruned in
a straight-forward manner without "loss of performance."
Unlike prior work that has predominantly pointed to the
test accuracy as a gauge for overparameterization (and thus
the ability to prune a network), we hypothesize that a more
robust and accurate measure of genuine overparameteriza-
tion is one that not only considers test accuracy, but also
the minimum (or average) prune potential over a variety of
tasks. Studying the prune potential is thus not only useful
to study the ability to safely prune a network but also has
the positive side-effect of establishing a robust measure of
network overparameterization.

Implicit regularization. Our studies reveal that the
amount of overparameterization is not only a function of the
task and the network size but also a function of the training
procedure. Specifically, we can prune the network more if
we explicitly regularize the network during (re-)training thus
increasing the “genuine” overparameterization of the net-
work which implies a higher prune potential. However, with
fewer parameters (due to pruning more) we trade in some

of the implicit regularization potential from SGD. Since
implicit regularization is not necessarily model-based we
can only regain the robustness of the pruned network for
known, i.e. modeled, distribution changes.

Generalization-aware pruning. Based on our results we
formulate a set of guidelines for pruning in practice as shown
in Section 1. We argue that in order to reliably and robustly
deploy pruned networks especially in the context of safety-
critical systems we should not only designate a hold-out
data set (test set) but also a hold-out data distribution (test
distribution). By assessing the performance of the pruned
network on data from the train and test distribution, we can
then quantify the effect of pruning in a way that can unearth
some of the short-comings that are lost in pruning and are
not apparent from a plain prune-accuracy curve on nominal
test data. Following our framework, a practitioner will be
able to more reliably assess whether the pruned network
can be considered as performant (in a robust sense) as the
unpruned network.

8 CONCLUSION

In this work, we have investigated the effects of the pruning
process on the functional properties of the pruned network
relative to its uncompressed counterpart. Our empirical
results suggest that pruned models are functionally simi-
lar to the their uncompressed counterparts but that, despite
this similarity, the prune potential of the network varies
significantly on a task-dependent basis: the prune potential
decreases significantly as the difficulty of the inference task
increases. Our findings underscore the need to consider
task-specific evaluation metrics beyond test accuracy prior
to deploying a pruned network and provide novel insights
into understanding the amount of network overparameter-
ization in deep learning. We envision that our framework
may invigorate further work towards rigorously understand-
ing the inherent model size-performance trade-off and help
practitioners in adequately designing and pruning network
architectures in a task-specific manner.
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BROADER IMPACT STATEMENT

In this paper, we study the impact of pruning when deploying neural networks in real-world conditions. This is of particular
importance since the main motivation to prune neural networks lies within training neural networks that are simultaneously
efficient and accurate. Henceforth, these networks can then be deployed in resource-constrained environments, such as
robotics, to achieve tasks that could otherwise only be computed on large-scale compute infrastructure.

However, we show that pruned neural networks do not necessarily perform on par with their unpruned parent but rather
that they exhibit significant performance decreases depending on slight variations within their assigned task. This raises
concerns with regards to the ability to find effectively pruned architectures with current network pruning techniques. With
the increasing amount of applications for deep learning including on small-scale devices, we have to vigilantly monitor and
consider the effects, brittleness, and potential biasedness of small-scale neural networks at an even higher degree than for
regular deep networks.

A OVERVIEW OF THE APPENDIX

In the main part of the paper, we have focused on representative subsets of each experiment. In the following, we provide
additional experimental details and present the complete set of conducted experiments. Specifically, the supplementary
material contains the following sections:

• Section B: additional experimental details and hyperparameters for how we prune networks
• Section C: experiments pertaining to measuring the functional similarities between pruned and unpruned networks
• Section D: experiments pertaining to the prune potential and excess error of pruned networks
• Section E: experiments pertaining to the prune potential and excess error of pruned networks with robust (re-)training

In addition to the results presented in the main part of the paper, we present further experimental evidence for our claims
across a variety of architectures and data sets.

We provide the code to reproduce our experiments at https://github.com/lucaslie/torchprune.

B PRUNING RESULTS

Our experimental evaluations are based on a variety of neural network architectures including ResNets (He et al., 2016),
VGGs (Simonyan & Zisserman, 2014), DenseNets (Huang et al., 2017), and WideResNets (Zagoruyko & Komodakis,
2016) trained on CIFAR10 (Torralba et al., 2008) and ImageNet (Russakovsky et al., 2015). We also conduct experiments
on a DeeplabV3 (Chen et al., 2017) with a ResNet50 backbone trained on the Pascal VOC 2011 segmentation data
set (Everingham et al., 2015). In the following section we outline the experimental details of the experiments on which
we base our observations. All networks were trained and evaluated on a compute cluster with NVIDIA RTX 2080Ti and
NVIDIA Titan RTX, and the experiments were implemented in PyTorch (Paszke et al., 2017). For each trained network, we
summarize the hyperparameters and the resulting prune results on the nominal test data.

B.1 Experimental Setup for CIFAR10

All hyperparameters for training, retraining, and pruning are outlined in Table 3. For training CIFAR10 networks we used
the training hyperparameters outlined in the respective original papers, i.e., as described by He et al. (2016), Simonyan &
Zisserman (2014), Huang et al. (2017), and Zagoruyko & Komodakis (2016) for ResNets, VGGs, DenseNets, and WideRes-
Nets, respectively. For retraining, we did not change the hyperparameters and repurposed the training hyperparameters
following the approaches of Liebenwein et al. (2020); Renda et al. (2020). We added a warmup period in the beginning
where we linearly scale up the learning rate from 0 to the nominal learning rate. Iterative pruning is conducted by repeatedly
removing the same ratio of parameters (denoted by α in Table 3). The prune parameter γ describes the failure probability of
the (provable) randomized pruning algorithms SiPP and PFP. We refer the reader to the respective papers for more details,
see the papers by Baykal et al. (2019b) and (Liebenwein et al., 2020) for SiPP and PFP, respectively.

B.2 Pruning Performance on CIFAR10

Below we provide the results regarding the achievable test accuracy of pruned networks across multiple target prune ratios.
Figure 9 indices the results for various networks trained on CIFAR10 using an iterative schedule to prune them. In Table 4,

https://github.com/lucaslie/torchprune
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VGG16 Resnet20/56/110 DenseNet22 WRN-16-8

Train

test error 7.19 8.6/7.19/6.43 10.10 4.81
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer SGD SGD SGD SGD
epochs 300 182 300 200

warm-up 5 5 5 5
batch size 256 128 64 128

LR 0.05 0.1 0.1 0.1
LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }

momentum 0.9 0.9 0.9 0.9
Nesterov 7 7 X X

weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Prune γ 1.0e-16 1.0e-16 1.0e-16 1.0e-16
α 0.85 0.85 0.85 0.85

Table 3: We report the hyperparameters used during training, pruning, and retraining for various convolutional architectures
on CIFAR-10. LR hereby denotes the learning rate and LR decay denotes the learning rate decay that we deploy after a
certain number of epochs. During retraining we used the same hyperparameters. {30, . . .} denotes that the learning rate is
decayed every 30 epochs.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

Resnet20 8.60 -0.02 84.92 81.04 -0.08 84.92 78.78 -0.33 52.06 24.98 -0.10 44.9 31.27
Resnet56 7.19 -0.53 92.91 94.31 -0.30 93.30 93.90 -0.38 82.71 65.50 -0.11 84.31 73.65

Resnet110 6.73 -0.10 95.76 96.73 -0.42 95.36 95.88 -0.25 86.71 72.07 -0.25 90.27 82.42
VGG16 7.19 -1.01 97.87 91.24 -0.82 98.00 88.45 -0.38 61.39 56.17 -0.15 90.30 72.03

DenseNet22 10.10 -0.09 71.38 76.81 -0.20 73.16 76.60 +0.21 43.55 42.95 -0.04 46.18 51.86
WRN16-8 4.81 -0.18 95.22 92.89 -0.21 95.30 92.03 +0.13 76.76 71.03 -0.08 78.79 74.51

Table 4: Overview of the pruning performance of each algorithm for various CNN architectures evaluated on the CIFAR
data set. For each algorithm and network architecture, the table reports the prune ratio (PR, %) and the ratio of flop reduction
(FR, %) of pruned models when achieving test accuracy within δ = 0.5% of the original network’s test accuracy (or the
closest result when the desired test accuracy was not achieved for the range of tested PRs). The top values for the error and
either PR (for weight-based) or FR (for filter-based algorithms) are bolded, respectively.

we indicate the maximal prune ratio (PR) and the maximal ratio of reduced flops (FR) for which the network achieves
commensurate accuracy (within 0.5% of the original accuracy). We note that the performance of our pruned networks is
competitive with state-of-the-art pruning results (Baykal et al., 2019b; Han et al., 2015; Liebenwein et al., 2020; Renda
et al., 2020). For ResNet20 for example, we are able to prune the network to 85% sparsity while maintaining the original
test error (-0.02% test error), see Table 4.

B.3 Experimental Setup on ImageNet

The hyperparameters for the ImageNet pruning experiments are summarized in Table 5. We consider pruned convolutional
neural networks derived from Resnet18 and Resnet101. As in the case of the CIFAR10 experiments, we re-purpose the
training schedule from the original ResNet paper (He et al., 2016) for both training and retraining. For multi-gpu training we
use the linear scaling rule of (Goyal et al., 2017) to scale up the learning rate and we use learning rate warm, where we
linearly scale up the learning rate from 0 to the nominal learning rate.
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Figure 9: The difference in test accuracy to the uncompressed network for the generated pruned models trained on CIFAR10
for the evaluated pruning schemes for various target prune ratios.

ResNet18/101

Train

top-1 test error 30.26/22.63
top-5 test error 10.93/6.45

loss cross-entropy
optimizer SGD

epochs 90
warm-up 5

batch size 256
LR 0.1

LR decay 0.1@{30, 60, 80}
momentum 0.9

Nesterov 7
weight decay 1.0e-4

Prune γ 1.0e-16
α 0.90

Table 5: We report the hyperparameters used during training, pruning, and retraining for various convolutional architectures
on ImageNet. LR hereby denotes the learning rate and LR decay denotes the learning rate decay that we deploy after a
certain number of epochs.
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B.4 Pruning Performance on ImageNet

The results of our pruning experiments are summarized in Figure 10 and Table 6. Given the computationally expensive
nature of ImageNet experiments, we stopped the experiments once the pruned network did not achieve commensurate
accuracy anymore (instead of going to extreme prune ratios where the performance decays further). Specifically, we show
the achievable test accuracy on nominal ImageNet data for various target prune ratios in Figure 10. In Table 6 we additionally
report the maximal prune ratio (PR) and ratio of removed flops (FR) for which the pruned network achieves commensurate
accuracy (i.e. within 0.5% of the unpruned network’s accuracy). Just as in the case of CIFAR10, our results are competitive
with those reported in state-of-the-art papers (Han et al., 2015; Liebenwein et al., 2020; Renda et al., 2020).
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Figure 10: The accuracy of the generated pruned models trained on ImageNet for the evaluated pruning schemes for various
target prune ratios.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

ResNet18 30.24 +0.15 85.79 77.14 +0.15 81.58 78.36 -0.07 13.69 10.52 +0.22 30.42 15.74
ResNet101 22.63 -0.71 81.56 83.31 -0.59 81.56 81.85 +0.29 53.11 53.28 +0.26 50.33 44.64

Table 6: Overview of the pruning performance of each algorithm for various CNN architectures trained and evaluated on
the ImageNet data set. For each algorithm and network architecture, the table reports the prune ratio (PR, %) and the ratio
of flop reduction (FR, %) of pruned models when achieving test accuracy within δ = 0.5% of the original network’s test
accuracy (or the closest result when the desired test accuracy was not achieved for the range of tested PRs). The top values
for the error and either PR (for weight-based) or FR (for filter-based algorithms) are bolded, respectively.

B.5 Experimental Setup for Pascal VOC

In addition to CIFAR and ImageNet, we also consider the segmentation task from Pascal VOC 2011 (Everingham et al.,
2015). We augment the nominal data training data using the extra labels as provided by Hariharan et al. (2011). As network
architecture we consider a DeeplabV3 (Chen et al., 2017) with ResNet50 backbone pre-trained on ImageNet. During
training we use the following data augmentation pipeline: (1) randomly resize (256x256 to 1024x1024) and crop to 513x513;
(2) random horizontal flip; (3) channel-wise normalization. During inference, we resize to 513x513 exactly before the
normalization (3) is applied. We report both intersection-over-union (IoU) and Top1 test error for each of the pruned and
unpruned networks. The experimental hyperparameters are summarized in Table 7.

B.6 Pruning Performance on VOC

The results of our pruning experiments are summarized in Figure 11 and Table 8. Specifically, we show the achievable test
accuracy on nominal VOC data for various target prune ratios in Figure 11. In Table 8 we report the maximal prune ratio
(PR) and ratio of removed flops (FR) for which the pruned network achieves commensurate accuracy (i.e. within 0.5% of
the unpruned network’s accuracy).
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DeeplabV3-ResNet50

Train

IoU test error (%) 34.78
top-1 test error (%) 7.94

Loss cross-entropy
Optimizer SGD

Epochs 45
Warm-up 0

Batch size 32
LR 0.02

LR decay (1 - “step”/“total steps”)0.9

Momentum 0.9
Nesterov 7

Weight decay 1.0e-4

Prune γ 1.0e-16
α 0.80

Table 7: We report the hyperparameters used during training, pruning, and retraining for various architectures on Pascal
VOC 2011. LR hereby denotes the learning rate and LR decay denotes the learning rate decay. Note that the learning rate is
polynomially decayed after each step.
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Figure 11: The accuracy of the generated pruned models trained on VOC for the evaluated pruning schemes and various
target prune ratios for a DeeplabV3-ResNet50 architecture.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

DeeplabV3 34.78 +0.47 58.87 58.65 +0.29 42.98 42.70 +0.00 0.00 0.00 -0.25 20.16 19.14

Table 8: Overview of the pruning performance of each algorithm for DeeplabV3 trained and evaluated on Pascal VOC
segmentation data. For each algorithm, the table reports the prune ratio (PR, %) and the ratio of flop reduction (FR, %) of
pruned models when achieving IoU test accuracy within δ = 0.5% of the original network’s test accuracy (or the closest
result when the desired test accuracy was not achieved for the range of tested PRs). The top values for the error and either
PR (for weight-based) or FR (for filter-based algorithms) are bolded, respectively.

C ADDITIONAL RESULTS FOR FUNCTION DISTANCE OF PRUNED NETWORKS

In the following, we provide additional empirical evidence for the results presented in Section 4 of the main paper. We
consider additional CIFAR networks for comparing informative input features and comparing matching predictions when
injecting random noise as described in Section 4.
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C.1 Comparison of Informative Features

C.1.1 Informative Features Based on Nominal Test Data

Figure 12 includes results on comparison of informative features for models pruned by other pruning algorithms on ResNet20
(see Section 4.2 and Figure 3). Figure 13 shows results for VGG16. The informative features were computed from a random
subset of CIFAR10 test data.

C.1.2 Informative Features Based on Out-of-distribution Test Data

We repeat the experiment with the informative features being computed from a random subset of CIFAR10-C test data (any
corruption). Figure 14 includes results on comparison of informative features, c.f. Section 4.2, for models pruned by WT
and FT on ResNet20. Figure 15 shows results for VGG16. We note that even when tested with out-of-distribution test data
we observe similar trends, i.e., pruned networks in general are more similar in the functional sense to their parent network
than a separately trained, unpruned network.

(a) ResNet20, Pruning by WT (b) ResNet20, Pruning by FT

(c) ResNet20, Pruning by SiPP (d) ResNet20, Pruning by PFP

Figure 12: Heatmap of confidences on informative pixels from pruned ResNet20 models. Y-axis is the model used to
generate 10% pixel subsets of 2000 sampled CIFAR-10 test images, x-axis describes the models evaluated with each 10%
pixel subset, cells indicate mean confidence towards true class of the model from the x-axis on tested data from y-axis.
Pruning by (a) Weight Thresholding (WT), (b) Filter Thresholding (FT), (c) SiPP, (d) Provable Filter Pruning (PFP).
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(a) VGG16, Pruning by WT (b) VGG16, Pruning by FT

(c) VGG16, Pruning by SiPP (d) VGG16, Pruning by PFP

Figure 13: Heatmap of confidences on informative pixels from pruned VGG16 models. Y-axis is the model used to generate
10% pixel subsets of 2000 sampled CIFAR-10 test images, x-axis describes the models evaluated with each 10% pixel
subset, cells indicate mean confidence towards true class of the model from the x-axis on tested data from y-axis. Pruning by
(a) Weight Thresholding (WT), (b) Filter Thresholding (FT), (c) SiPP, (d) Provable Filter Pruning (PFP).
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(a) ResNet20, Pruning by WT (b) ResNet20, Pruning by FT

Figure 14: Heatmap of confidences on informative pixels from pruned ResNet20 models. Y-axis is the model used to
generate 10% pixel subsets of 2000 randomly sampled CIFAR10-C corrupted test images, x-axis describes the models
evaluated with each 10% pixel subset, cells indicate mean confidence towards true class of the model from the x-axis on
tested data from y-axis. Pruning by (a) Weight Thresholding (WT), (b) Filter Thresholding (FT).

(a) VGG16, Pruning by WT (b) VGG16, Pruning by FT

Figure 15: Heatmap of confidences on informative pixels from pruned VGG16 models. Y-axis is the model used to generate
10% pixel subsets of 2000 randomly sampled CIFAR10-C corrupted test images, x-axis describes the models evaluated with
each 10% pixel subset, cells indicate mean confidence towards true class of the model from the x-axis on tested data from
y-axis. Pruning by (a) Weight Thresholding (WT), (b) Filter Thresholding (FT).
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C.2 Noise Similarities

We consider noise properties of networks when feeding perturbed data into the network. In particular, we are interested
in understanding the similarities of the output of a pruned network and its unpruned parent as described in Section 4 of
the main paper. To this end we consider two metrics: (i) percentage of matching predictions (labels) of pruned networks
w.r.t. their unpruned parent for various target prune ratios and (ii) the norm-based difference between pruned networks and
their unpruned parent. Each result also includes comparisons to a separately trained network of the same architecture with a
different random initialization to highlight the functional similarities between unpruned and pruned networks. Overall, we
find that pruned networks functionally approximate their pruned parent more closely than a separately trained network. We
provide additional empirical evidence for this conclusion below.

C.2.1 Results for WT and FT on Additional Networks

We consider the functional similarities between pruned networks and their unpruned parent for the neural network archi-
tectures ResNet20, ResNet56, ResNet110, VGG16, DenseNet22, and WideResNet16-8 trained on CIFAR10 as shown in
Figures 16, 17, 18, 19, 20, and 21, respectively. All networks shown here were retrained using the same iterative prune
schedule. As apparent from the respective figures, the functional similarities are consistent across architectures for the same
pruning strategies.
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Figure 16: The functional similarities between pruned ResNet20 models and their unpruned parent. We consider the
difference in the output after injecting various amounts of noise into the input, see (a), (b) and (c), (d) for networks
weight-pruned with WT and filter-pruned with FT, respectively. The differences between a separately trained network and
the unpruned parent is also shown. The plots depict the difference measured as the percentage of matching predictions and
as norm-based difference in the output after applying softmax, see (a), (c) and (b), (d), respectively.
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Figure 17: The functional similarities between pruned ResNet56 models and their unpruned parent.
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Figure 18: The functional similarities between pruned ResNet110 models and their unpruned parent.
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Figure 19: The functional similarities between pruned VGG16 models and their unpruned parent.
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Figure 20: The functional similarities between pruned DenseNet22 models and their unpruned parent.
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Figure 21: The functional similarities between pruned WRN16-8 models and their unpruned parent.
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Figure 22: The functional similarities between pruned ResNet20 models and their unpruned parent.
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C.2.2 Results for Additional Pruning Methods (SiPP and PFP)

In the following we compare the functional similarities using the alternative weight and filter pruning methods SiPP (Baykal
et al., 2019b) and PFP (Liebenwein et al., 2020), respectively. The methods are described in more detail in Section 3 of
the main paper. Below we present results for ResNet20, ResNet56, ResNet110, VGG16, DenseNet22, and WRN16-8, see
Figures 22, 23, 24, 25, 26, and 27 respectively. We note that the conclusions with regards to the functional similarities
remain in essence unaltered for alternative pruning methods. Networks were trained with the same iterative prune-retrain
schedule as in the previous subsection.
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Figure 23: The functional similarities between pruned ResNet56 models and their unpruned parent.
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Figure 24: The functional similarities between pruned ResNet110 models and their unpruned parent.
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Figure 25: The functional similarities between pruned VGG16 models and their unpruned parent.
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Figure 26: The functional similarities between pruned DenseNet22 models and their unpruned parent.
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Figure 27: The functional similarities between pruned WRN16-8 models and their unpruned parent.
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D ADDITIONAL RESULTS FOR PRUNE POTENTIAL

We present additional experimental evaluation for the results presented in Section 5 of the main paper. As in Section 5, we
consider the prune potential for pruned networks when testing the network under noisy input and under corrupted images.

D.1 Additional Results for Prune Potential Based on Noise

Here, we inject randomly sampled, bounded uniform noise into the normalized input and investigate the prune potential
under various noise levels. Overall we find that the prune potential significantly decreases as more noise is injected into the
input providing further evidence of the results presented in the main paper.

We consider the prune potential for the neural network architectures ResNet20, ResNet56, ResNet110, VGG16, DenseNet22,
and WideResNet16-8 trained on CIFAR10 as shown in Figure 28. All networks were iteratively pruned and retrained.
Overall, we can observe that the prune potential decreases with higher levels of noise and that filter-pruned networks
tend to have lower prune potential than weight-pruned networks for any given target prune ratio. However, we note that
depending on the architecture the specific prune potential may be less affected. Specifically, we note that the prune potential
of WideResNets (Figure 28, bottom right) seems to be entirely unaffected by noise across all tested prune methods. In
contrast to the other networks, WideResNets are wider and less deep, which may provide a possible explanation for the
observed behaviors. Due to the wide spatial dimensions of each network, the noise may be better absorbed since it may
spread across the width of the layer. Moreover, the reduced depth may help in avoiding positive amplification of the noise as
depth increases. From this observation, we may conclude that WideResNets are indeed overparameterized and henceforth
the prune potential remains unaffected for slight perturbations in the input.

D.2 Additional Results for Prune Potential Based on Corruptions

Following Section 5 we present additional results pertaining to the prune potential of networks when generalizing to out-of-
distribution test data of various kinds. For CIFAR10, we consider the o.o.d. data sets by Hendrycks & Dietterich (2019)
(CIFAR10-C) which are publicly available. Additionally, we also compare to CIFAR10.1 by Recht et al. (2018), which is an
alternative in-distribution test data set for CIFAR10. For ImageNet, we consider the ImageNet versions of the CIFAR10-C
data sets, denoted by ImageNet-C (Hendrycks & Dietterich, 2019). Additionally, we compare to ObjectNet (Barbu et al.,
2019), an o.o.d. data set that exhibits large variations over the context and the pose of an object instead of image corruptions.
For VOC, we consider the same set of corruptions, denoted by VOC-C, based on the generalization of the CIFAR10-C
corruptions to any image data set by Michaelis et al. (2019). For CIFAR10-C, ImageNet-C, and VOC-C, we evaluate the
prune potential for severity level 3 out of 5 (Hendrycks & Dietterich, 2019; Michaelis et al., 2019). In accordance with the
results presented in Section 5 we find that the prune potential can vary substantially depending on the task.

We consider the out-of-distribution prune potential for different CIFAR10-C data sets (severity level 3) for the network
architectures ResNet20, ResNet56, ResNet110, VGG16, DenseNet22, and WideResNet16-8, see Figures 29, 30, 31, 32, 33,
and 34, respectively. Each network was weight-pruned and filter-pruned with WT and SiPP, and FT and PFP, respectively.
We note that in general the prune potential varies across prune methods, network architectures, and task. Moreover, some
of the networks seem to cope better with out-of-distribution data than other networks (e.g. WideResNet16-8 as seen from
Figure 34). However, across all experiments the prune potential varies significantly and it seems difficult to predict clear
trends highlighting the sensitivity of the prune potential w.r.t. out-of-distribution test data.

D.3 Additional Results for Prune Potential Based on Corruptions on ImageNet and VOC

Finally, we consider the prune potential for out-of-distribution test data on a ResNet18 (ImageNet), ResNet101 (ImageNet),
and DeeplabV3 (VOC), see Figures 35, 36, and 37, respectively. We note that the prune potential in this case is equally
sensitive to the test task emphasizing that our observations scale to larger networks and data sets as well instead of being
confined to small-scale data sets such as CIFAR10. Moreover, considering the expansive nature of ImageNet experiments
we did not prune the network to very extreme prune ratios but instead stopped at around 80%-90%. In light of these
observations, we conjecture that the nominal prune ratio is even higher, which would result in an even larger overall gap in
prune potential between in-distribution and out-of-distribution test data.
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Figure 28: The prune potential (%) achievable over various levels of noise injected into the input.
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Figure 29: The prune potential of a ResNet20 achievable for CIFAR10 out-of-distribution data sets.
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Figure 30: The prune potential of a ResNet56 achievable for CIFAR10 out-of-distribution data sets.
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Figure 31: The prune potential of a ResNet110 achievable for CIFAR10 out-of-distribution data sets.
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Figure 32: The prune potential of a VGG16 achievable for CIFAR10 out-of-distribution data sets.



Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy

0.0%

50.0%

100.0%
W

T
densenet22, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

densenet22, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, densenet22, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss
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(d) FT, prune-test curve
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Figure 33: The prune potential of a DenseNet22 achievable for CIFAR10 out-of-distribution data sets.
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20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, wrn16_8, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve
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Figure 34: The prune potential of a WRN16-8 achievable for CIFAR10 out-of-distribution data sets.
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(d) FT, prune-test curve
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Figure 35: The prune potential of a ResNet18 achievable for ImageNet out-of-distribution data sets.
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(c) WT, prune-test curve
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(d) FT, prune-test curve
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Figure 36: The prune potential of a ResNet101 achievable for ImageNet out-of-distribution data sets.
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Figure 37: The prune potential of a DeeplabV3 achievable for Pascal VOC out-of-distribution data sets.
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Figure 38: The prune potential of a ResNet20 trained on CIFAR10 for WT and FT, respectively. In each figure the same
experiment is repeated with different values of δ ranging from 0% to 5%.
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D.4 Choice of δ

We evaluated the prune potential for a ResNet20 trained on CIFAR10 for a range of possible values for δ to ensure that
our observations hold independent of the specific choice of δ. Recall that δ denotes the amount of “slack” when evaluating
the prune potential, i.e., the difference in test accuracy between the pruned and unpruned network for which the pruned
network’s performance is considered commensurate. Specifically, as shown in Figure 38, we consider a range of δ between
0% and 5%. Naturally, the prune potential is higher overall for larger values of δ. However, we can see that our main
observations essentially remain unchanged, that is the prune potential still significantly varies across different tasks and
distributions. Overall, these results confirm our previous findings.

D.5 Additional Results for Excess Error Based on Corruptions

Recall that the excess error is defined as the additional error incurred on the test distribution compared to the error on the
train distribution. The difference in excess error between pruned and unpruned networks thus quantifies the additional error
incurred by the pruned network on the test distribution on top of the error increase incurred by the pruned network compared
to the unpruned network according to the prune-accuracy curve on the train distribution.

We used ordinary least squares (linear regression) to compute the prediction of the relationship between prune ratio and
difference in excess error. The y-intercept is set to 0 since by the definition the difference in excess error is 0% for a prune
ratio of 0%. The shaded regions describe the 95% confidence intervals, which were computed based on bootstrapping.

The results for the CIFAR10 network architectures ResNet20, ResNet56, ResNet110, VGG16, DenseNet22, and WRN16-8
are shown in Figures 39, 40, 41, 42, 43, and 44, respectively. The results for ImageNet network architectures ResNet18
and ResNet101 are shown in Figures 45 and 46, respectively. The results for the VOC network architecture DeeplabV3 is
shown in Figure 47. Note that ideally the slope would be zero indicating that the prune-accuracy curve on nominal data
is predictive of o.o.d. data. However, as shown most pruned networks exhibit a significant increase in excess error that
increases with higher prune ratios. These results further corroborate our understanding that networks cannot be pruned to
full extent when faced with o.o.d. data.

Notable exceptions include WRN16-8 (CIFAR10) and ResNet101 (ImageNet) with little correlation between the prune
ratio and the difference in excess error indicating that those networks may be genuinely overparameterized in a robust sense
confirming our findings from previous sections.

The negative delta in excess error for FT on DeeplabV3 (Figure 47), on the other hand, is a spurious consequence of the
prune potential of FT for nominal data already being zero rather than a consequence of the amount of overparameterization
in the network.
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Figure 39: The difference in excess error for a ResNet20 trained on CIFAR10.
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Figure 40: The difference in excess error for a ResNet56 trained on CIFAR10.
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Figure 41: The difference in excess error for a ResNet110 trained on CIFAR10.
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Figure 42: The difference in excess error for a VGG16 trained on CIFAR10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure 43: The difference in excess error for a DenseNet22 trained on CIFAR10.
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Figure 44: The difference in excess error for a WRN16-8 trained on CIFAR10.
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Figure 45: The difference in excess error for a ResNet18 trained on ImageNet.
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Figure 46: The difference in excess error for a ResNet101 trained on ImageNet.
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Figure 47: The difference in excess error for a DeeplabV3 trained on Pascal VOC.
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D.6 Results for Overparameterization

We summarize our results pertaining to using the prune potential as a way to gauge the amount of overparameterization.
Specifically, for each network and prune method, we evaluate the average and minimum prune potential for both the train
and test distribution. The average and minimum are hereby computed over the corruptions/variations that are included in
each distribution. Note that for these experiments the train distribution only contains the nominal data; thus the average and
minimum coincides. For the test distribution we take the average and minimum over all the respective corruptions. The
mean and standard deviation reported are computed over three repetitions of the same experiment.

The resulting prune potentials are listed in Tables 9 and 10 for weight pruning (WT, SiPP) and filter pruning (FT, PFP),
respectively. Note that for most networks we can observe around 20% drop in average prune potential between train
and test distribution while most networks have 0% (!) minimum prune potential for data from the test distribution. As
previously observed some networks may be considered genuinely overparameterized in the robust sense including WRN16-8,
ResNet101, which manifests itself with a very stable prune potential across both train and test distribution.

Model
WT - Prune Potential (%) SiPP - Prune Potential (%)

Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 84.9 ± 0.0 66.7 ± 3.3 84.9 ± 0.0 0.0 ± 0.0 86.4 ± 2.2 70.4 ± 4.3 86.4 ± 2.2 0.0 ± 0.0
Resnet56 94.6 ± 0.0 82.3 ± 4.2 94.6 ± 0.0 4.6 ± 6.5 94.5 ± 0.9 78.5 ± 1.0 94.5 ± 0.9 0.0 ± 0.0

ResNet110 96.3 ± 0.6 77.9 ± 1.4 96.3 ± 0.6 0.0 ± 0.0 96.5 ± 0.7 78.8 ± 2.8 96.5 ± 0.7 0.0 ± 0.0
VGG16 98.0 ± 0.0 80.9 ± 2.2 98.0 ± 0.0 0.0 ± 0.0 98.0 ± 0.0 80.7 ± 1.9 98.0 ± 0.0 0.0 ± 0.0

DenseNet22 79.8 ± 1.9 76.0 ± 6.7 79.8 ± 1.9 24.9 ± 35.2 79.8 ± 1.9 74.1 ± 9.1 79.8 ± 1.9 21.5 ± 30.4
WRN16-8 98.0 ± 0.0 95.7 ± 0.7 98.0 ± 0.0 90.0 ± 2.1 95.3 ± 0.0 94.1 ± 0.8 95.3 ± 0.0 78.1 ± 15.1
ResNet18 85.8 ± 0.0 63.6 ± 0.0 85.8 ± 0.0 0.0 ± 0.0 81.6 ± 0.0 57.8 ± 0.0 81.6 ± 0.0 0.0 ± 0.0

ResNet101 81.6 ± 0.0 76.8 ± 0.0 81.6 ± 0.0 0.0 ± 0.0 81.6 ± 0.0 70.7 ± 0.0 81.6 ± 0.0 0.0 ± 0.0
DeeplabV3 58.9 ± 9.3 11.6 ± 2.7 58.9 ± 9.3 0.0 ± 0.0 43.0 ± 6.6 11.5 ± 3.1 43.0 ± 6.6 0.0 ± 0.0

Table 9: The average and minimum prune potential computed on the train and test distribution, respectively, for weight
prune methods (WT, SiPP). The train distribution hereby consists of nomimal data, while the test distribution consists of the
CIFAR10-C, ImageNet-C, VOC-C corruptions.

FT - Prune Potential (%) PFP - Prune Potential (%)

Model Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 65.0 ± 6.7 55.3 ± 4.8 65.0 ± 6.7 0.0 ± 0.0 66.5 ± 3.0 53.9 ± 4.4 66.5 ± 3.0 0.0 ± 0.0
ResNet56 86.6 ± 1.2 64.8 ± 3.7 86.6 ± 1.2 0.0 ± 0.0 88.1 ± 0.0 64.9 ± 4.0 88.1 ± 0.0 0.0 ± 0.0

ResNet110 88.1 ± 3.5 68.5 ± 3.2 88.1 ± 3.5 0.0 ± 0.0 92.2 ± 1.8 71.6 ± 1.8 92.2 ± 1.8 0.0 ± 0.0
VGG16 85.4 ± 2.4 66.3 ± 0.5 85.4 ± 2.4 0.0 ± 0.0 95.0 ± 0.5 77.9 ± 2.1 95.0 ± 0.5 0.0 ± 0.0

DenseNet22 47.4 ± 2.2 58.2 ± 5.3 47.4 ± 2.2 9.6 ± 13.6 51.8 ± 5.3 59.6 ± 6.0 51.8 ± 5.3 12.6 ± 17.8
WRN16-8 86.2 ± 1.3 75.7 ± 4.1 86.2 ± 1.3 36.6 ± 28.6 86.9 ± 1.9 86.6 ± 1.0 86.9 ± 1.9 66.7 ± 1.7
ResNet18 13.7 ± 0.0 13.5 ± 0.0 13.7 ± 0.0 0.0 ± 0.0 30.4 ± 0.0 22.5 ± 0.0 30.4 ± 0.0 0.0 ± 0.0

ResNet101 53.1 ± 0.0 33.5 ± 0.0 53.1 ± 0.0 0.0 ± 0.0 50.3 ± 0.0 43.0 ± 0.0 50.3 ± 0.0 0.0 ± 0.0
DeeplabV3 0.0 ± 0.0 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 20.2 ± 0.1 6.8 ± 2.6 20.2 ± 0.1 0.0 ± 0.0

Table 10: The average and minimum prune potential computed on the train and test distribution, respectively, for filter
prune methods (FT, PFP). The train distribution hereby consists of nomimal data, while the test distribution consists of the
CIFAR10-C, ImageNet-C, VOC-C corruptions.

E ADDITIONAL DETAILS FOR PRUNE POTENTIAL WITH ROBUST TRAINING

In this section, we consider whether including additional data augmentation techniques derived from the corruptions of
CIFAR10-C can boost and/or stabilize the prune potential of a network. Specifically, we incorporate a subset of the
corruptions into the training pipeline to train and retrain the pruned network in a robust manner. Below, we list details
pertaining to the experimental setup as well as report the results on the conducted experiments.
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Train Distribution Test Distribution
Nominal CIFAR10 (no corruption) CIFAR10.1

Noise Impulse, Shot Gauss
Blur Motion, Zoom Defocus, Glass

Weather Snow Brightness, Fog, Frost
Digital Contrast, Elastic, Pixel Jpeg

Table 11: The list of corruptions used for the train and test distribution, respectively, categorized according to type.

E.1 Experimental Setup and Prune Results

To train, prune, and retrain networks we consider the same prune pipeline and experimental setting as described in
Section D.2. In addition, we incorporate a subset of the CIFAR10-C corruptions into the training and retraining pipeline by
corrupting the training data with the respective corruption technique. That is, when sampling a batch of training data each
training image is corrupted with a CIFAR10-C corruption (or no corruption) uniformly at random. The subset of corruptions
used as part of the train and test distribution are listed in Table 11. Note that the train and test distribution are mutually
exclusive, i.e., they do not share any of the corruptions. However, as shown in Table 11 each category of corruption is used
in both the train and test distribution. For each corruption, we choose severity level 3 out of 5 just as before. The nomimal
prune-accuracy curves (CIFAR10) for each of the trained and pruned networks are shown in Figure 48.
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Figure 48: The difference in test accuracy (nominal CIFAR10) to the uncompressed network.

E.2 Results for Prune Potential

Our results for the prune potential of the network architectures ResNet20, ResNet56, ResNet110, VGG16, DenseNet22,
and WRN16-8 are shown in Figures 49, 50, 51, 52, 53, and 54, respectively. We note that overall the prune potential for
corruptions from the train distribution can be well preserved since we already included the respective corruptions during
training and we can predict the prune potential accurately. However, we can also observe that the prune potential improves
for some of the corruptions that were not included during retraining. Despite training in a robust manner, however, the
prune potential can still be significantly lower for corruptions from test distribution and/or exhibit high variance (low
predictability).
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Figure 49: The prune potential of a robustly pruned ResNet20 achievable for CIFAR10 out-of-distribution data sets.
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(d) FT, prune-test curve
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Figure 50: The prune potential of a robustly pruned ResNet56 achievable for CIFAR10 out-of-distribution data sets.
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Figure 51: The prune potential of a robustly pruned ResNet110 achievable for CIFAR10 out-of-distribution data sets.
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(d) FT, prune-test curve
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Figure 52: The prune potential of a robustly pruned VGG16 achievable for CIFAR10 out-of-distribution data sets.
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(d) FT, prune-test curve
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Figure 53: The prune potential of a robustly pruned DenseNet22 achievable for CIFAR10 out-of-distribution data sets.
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Figure 54: The prune potential of a robustly pruned WRN16-8 achievable for CIFAR10 out-of-distribution data sets.
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E.3 Results for Excess Error

Following the approach described in Section D.5 we also evaluated the resulting difference in excess error between pruned
and unpruned networks. Our results are shown in Figures 55, 56, 57, 58, 59, and 60 for ResNet20, ResNet56, ResNet110,
VGG16, DenseNet22, and WRN16-8, respectively, all of which have been trained in a robust manner. We note that for most
networks, except for smaller ones like ResNet20, the correlation between prune ratio and difference in excess error almost
disappears. These results encourage the use of robust pruning techniques in order to ensure that pruned networks perform
reliably. However, we note that the excess error is computed as an average over all corruptions included in the train and test
distribution, respectively. Thus, it is not an appropriate measure to estimate whether particular corruptions could still impact
the prune potential more significantly than others.
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Figure 55: The difference in excess error for a robustly pruned ResNet20 trained on CIFAR10.
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Figure 56: The difference in excess error for a robustly pruned ResNet56 trained on CIFAR10.
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Figure 57: The difference in excess error for a robustly pruned ResNet110 trained on CIFAR10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%
De

lta
 E

xc
es

s E
rro

r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure 58: The difference in excess error for a robustly pruned VGG16 trained on CIFAR10.
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Figure 59: The difference in excess error for a robustly pruned DenseNet22 trained on CIFAR10.
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Figure 60: The difference in excess error for a robustly pruned WRN16-8 trained on CIFAR10.
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E.4 Results for Overparameterization

Finally, we report the average and minimum prune potential across all networks and prune methods for the train and test dis-
tribution, respectively. As highlighted in Section D.6, the prune potential is used to gauge the amount of overparameterization
in the network.

The resulting prune potentials are listed in Tables 12 and 13 for weight prune methods (WT, SiPP) and filter prune methods
(FT, PFP), respectively. In contrast to Section D.6 the minimum and average prune potential on the train distribution differ
since here the train distribution contains multiple corruptions. We note that with robust training the average prune potential
remains almost unaffected by changes in the distribution as also apparent from the results in Section E.3. In addition, for
most networks even the minimum prune potential on the test distribution is nonzero. These results further encourage the use
of robust training techniques when pruning neural networks.

As elaborated upon in Section 6, we observe that we can regain much of the prune potential by explicitly regularizing the
pruned network during retraining. In other words, the amount of overparameterization is not only a function of the data set
and network architecture, but of the training procedure as well.

However, we note that these observations hinge upon the particular choice of the train and test distribution, which share
certain commonalities in this case. Potentially, it might be possible to construct test distributions that differ significantly
from the train distribution, in which case pruned networks might suffer disproportionally more from the distribution change
compared to unpruned networks. These results would then be analogous to the ones without robust training presented in
Section D.

Model
WT - Prune Potential (%) SiPP - Prune Potential (%)

Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 87.5 ± 1.9 84.7 ± 0.9 83.5 ± 3.6 72.6 ± 4.9 84.2 ± 1.7 80.3 ± 1.6 77.4 ± 6.1 65.9 ± 6.1
ResNet56 91.8 ± 0.5 91.3 ± 0.4 90.2 ± 1.0 87.8 ± 1.3 88.7 ± 0.5 87.2 ± 0.1 87.8 ± 1.3 81.0 ± 2.0

ResNet110 93.8 ± 0.3 93.2 ± 0.4 92.7 ± 0.0 88.7 ± 0.0 90.8 ± 0.1 90.2 ± 0.1 89.4 ± 1.0 83.6 ± 1.6
VGG16 97.0 ± 0.0 97.0 ± 0.0 97.0 ± 0.0 96.8 ± 0.3 96.5 ± 0.1 95.5 ± 0.5 94.6 ± 0.5 88.3 ± 3.9

DenseNet22 73.4 ± 1.1 72.7 ± 1.9 67.4 ± 0.0 51.8 ± 5.0 64.7 ± 1.3 64.8 ± 0.6 55.4 ± 5.0 51.8 ± 5.0
WRN16-8 97.0 ± 0.0 97.0 ± 0.0 97.0 ± 0.0 96.8 ± 0.3 97.0 ± 0.0 96.7 ± 0.5 96.8 ± 0.3 94.3 ± 3.8

Table 12: The average and minimum prune potential computed on the train and test distribution, respectively, for weight
prune methods (WT, SiPP). The train and test distribution hereby each consist of a mutually exclusive subset of corruptions
as listed in Table 11.

FT - Prune Potential (%) PFP - Prune Potential (%)

Model Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 44.0 ± 6.3 34.4 ± 6.1 19.3 ± 15.0 7.1 ± 10.0 55.2 ± 6.2 47.7 ± 6.4 39.0 ± 16.1 13.3 ± 9.4
ResNet56 77.1 ± 0.4 77.1 ± 0.9 72.2 ± 2.9 67.3 ± 6.1 80.8 ± 0.4 76.3 ± 0.5 78.8 ± 0.2 58.5 ± 7.1
ResNet110 82.1 ± 1.8 81.7 ± 0.8 78.7 ± 0.0 74.9 ± 2.7 84.4 ± 2.1 80.0 ± 2.2 81.6 ± 2.1 58.0 ± 7.7

VGG16 48.0 ± 3.3 41.5 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 81.9 ± 1.8 79.8 ± 2.3 62.7 ± 10.5 63.9 ± 3.9
DenseNet22 20.3 ± 0.7 20.0 ± 5.7 13.2 ± 9.4 6.6 ± 9.4 34.2 ± 8.8 33.1 ± 6.5 17.5 ± 14.2 0.0 ± 0.0
WRN16-8 69.7 ± 4.1 64.8 ± 2.2 54.2 ± 12.9 24.4 ± 17.3 80.7 ± 0.7 76.9 ± 2.9 72.1 ± 3.1 57.2 ± 14.9

Table 13: The average and minimum prune potential computed on the train and test distribution, respectively, for filter prune
methods (FT, PFP). The train and test distribution hereby each consist of a mutually exclusive subset of corruptions as listed
in Table 11.
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