Counterexample-Guided Synthesis of Safety Contracts

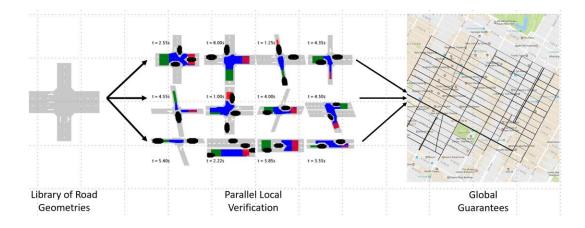
Jon DeCastro(TRI), Lucas Liebenwein, Cristian-Ioan Vasile

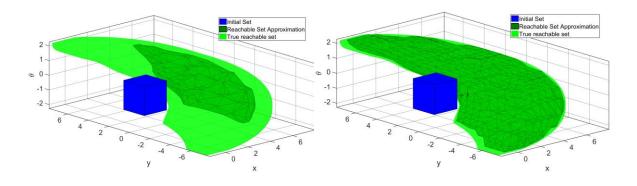
Overview

- Scalable verification and safety guarantees
- Scalability with respect to
 - Space: size of road network
 - Fleet: number of vehicles
 - Specification: rules of the roads
 - Traffic: driving scenarios (NEW!)

• Vision:

"Provide long-term safety guarantees for autonomous vehicle deployment"



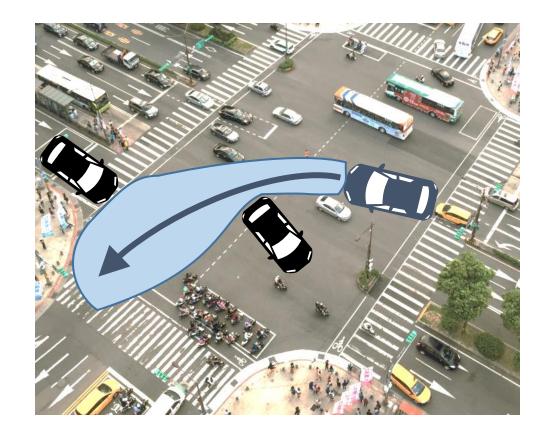


Prior Work

• Scalable verification through assume-guarantee contracts

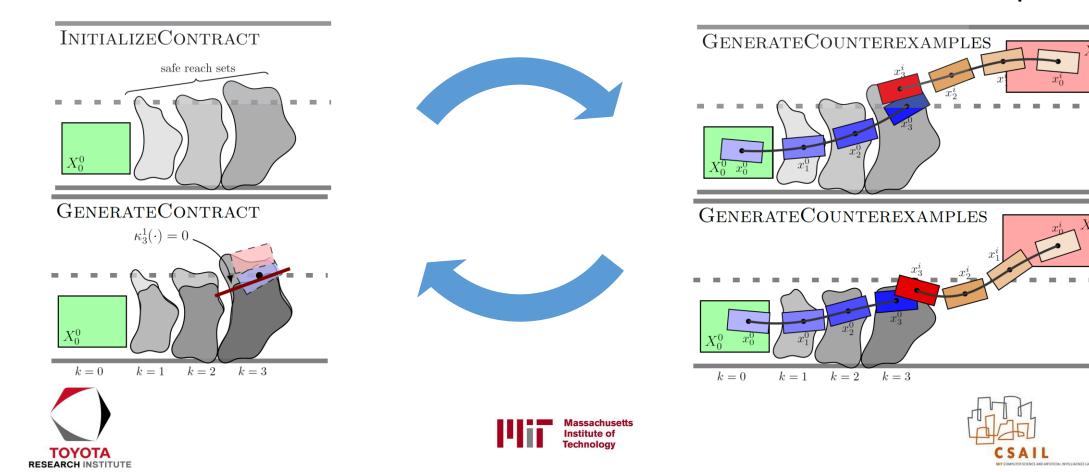
[1] Liebenwein, Lucas et al. "Compositional and Contract-based Verification for Autonomous Driving on Road Networks." International Symposium on Robotics Research (ISRR), 2017, Puerto Varas, Chile • Sampling-based reachability analysis

[2] Liebenwein^{*}, Lucas, Cenk Baykal^{*}, et al. "Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees." Proceedings of Robotics: Science and Systems, 2018, Pittsburgh, Pennsylvania

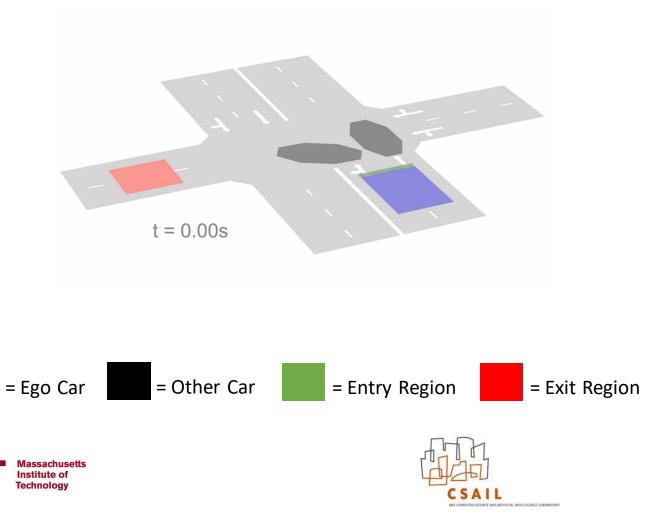


Safety Contracts

- Use easy-to-implement, explainable contracts
- Contract = set of state space constraints
- Contracts help to guard against other traffic participants



Candidate contracts with reachability analysis



Refinement through falsification-

based counterexamples

Generate Candidate Contracts

- Same principle as in ISRR'17
- Reachability analysis with
 - road segment
 - fixed traffic scenario
 - safety constraints
- Can leverage modular approach to verification

Generate Counterexamples

- Refinement of contract through falsification
- We try to find traffic trajectories such that
 - The behavior is "expectable"
 - The candidate contract cannot guard the ego-car
- Direct collocation **stochastic** quadratic program (SQP)

$\max_{,\bar{u},\bar{w},\bar{x}} p(\bar{w})$	
s.t. $x_{k+1} - x_k = h f_{collocation}, \forall k = 0, \dots, T -$	1 (dynamics)
$x_k \in \mathcal{X}, \forall k = 0, \dots, T$	
$u_k \in \mathcal{U}, \forall k = 0, \dots, T-1$	
$x_0 \in \mathcal{X}_0, \ u_0 \in \mathcal{U}$	(initial conditions)
$\psi(x_T) \le 0$	(safety specification)
$\kappa_k^j(x_k) \le 0, \forall j = 1, \dots, Q, \ \forall k = 0, \dots, T$	(contracts)
$p(\bar{w}) \ge \alpha T$	(chance constraint)

h.

Rules of the Road and Behavior

• The safety contract of the egocar consider rules of the roads

	Table 1: Rules of the road for highway scenarios.			
No.	Rule	Constraint set		
1	Don't drive in the left lanes.	$\{0 \le x_c^0 \le L, -n_{right} \cdot W \le y_c^0 \le 0\}$		
2	If driving behind another car, keep a reasonable distance away to avoid collision if it suddenly stops.	$\{x_{c}^{i} - x_{c}^{0} \geq \epsilon_{x}^{safe} v^{0} \mid \forall i \ . \ x_{c}^{i} - x_{c}^{0} \geq 0 \land y_{c}^{i} - y_{c}^{0} < W\}$		
3		$\{x_{c}^{0} - x_{c}^{i} \geq \epsilon_{x}^{safe} v^{0} \mid \forall i . x_{c}^{0} - x_{c}^{i} \geq 0 \land y_{c}^{i} - y_{c}^{0} < W\}$		
4	Don't cross solid lines.	$\{\xi_x^\ell \leq x_c^0 \leq \zeta_x^\ell \wedge -n_{right} \cdot W \leq y_c^0 \leq 0 \mid 1 \leq \ell \leq n_{solid}\}$		
5		$\begin{array}{l} \{y_c^0 - y_c^i > W \land v^0 > v^i \mid \\ \forall i \ . \ v^i > 0 \land x_c^0 - x_c^i \le \epsilon_x^{overtake} \land \\ \nexists j \ . (x_c^j - x_c^i \le \epsilon_x^{safe-overtake} \land y_c^0 - y_c^j \le W) \} \end{array}$		
6	If another vehicle is trying to overtake you keep right and don't accelerate. If necessary, slow down and pull over.	$ \begin{split} & \{u_a^0 \leq 0 \land y_c^i - y_c^0 \geq W \land y_c^0 \leq 0 \mid \\ & \forall i \ . \ y_c^i - y_c^0 \leq 1.5W \land v^i > 0 \land x_c^i - x_c^0 \leq \epsilon_x^{overtake} \} \end{split} $		
7	If passing oncoming traffic, leave suffi- cient lateral space to not get hit. If ob- structed, slow down.	$\{y^i_c-y^0_c\geq \epsilon^{safe}_y\mid y^i_c\geq 0 \wedge v^i\leq 0\}$		
8	Don't drive abnormally slowly such that you impede the progress of other vehi- cles. Don't drive above the speed limit or abnormally fast.	$\{ v^0 - \bar{v} \le \epsilon_v, v^0 \le \epsilon_v^{legal}\}$		

• The traffic agents are modelled as **probabilistic** IDM agents

Table 2: Parameters used to model driver behaviors for the traffic cars.

	Description	Symbol		ng Style Aggressive
IDM	Reference speed (m/s) Maximum acceleration (m/s ²) Comfortable deceleration (m/s ²) Minimum-desired net distance (m) Time headway to lead vehicle (s) Free-road exponent	$v_{ref} \ a \ b \ s_0 \ t_h \ \delta$	$10 \\ 1 \\ 3 \\ 1 \\ 0.1 \\ 4$	$ \begin{array}{r} 1.5 \\ 4 \\ 6 \\ 0.5 \\ 0.05 \\ 4 \end{array} $
Pure-Pursuit Lookahead distance (m) s_{look} 15		10		
Perception	Range (m)	$s_{perception}$	100	100
Disturbances	Steering angle variance (rad^2) Acceleration variance (m^2/s^4)	$\sigma_{\delta} \ \sigma_{a}$	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	$5\\2.5$

Tuning of Behavior

Strict Rule Set

Relaxed Rule Set

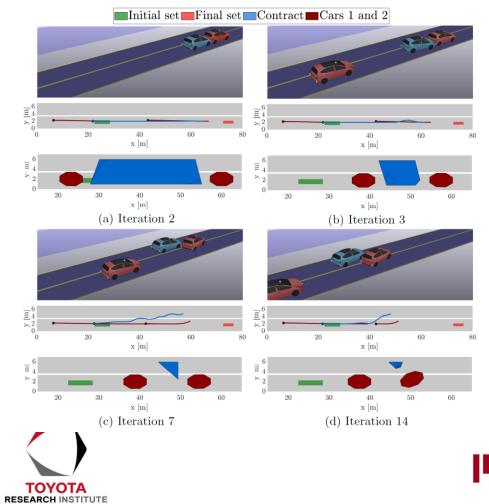
No.	Rule	Constraint set
1	Don't drive in the left lanes.	$\{0 \le x_c^0 \le L, -n_{right} \cdot W \le y_c^0 \le 0\}$
	sonable distance away to avoid collision if it suddenly stops	$\{x^i_c - x^0_c \geq \epsilon^{safe}_x \; v^0 \mid \forall i \; . \; x^i_c - x^0_c \geq 0 \land y^i_c - y^0_c < W\}$
3	If you want to slow down, give clear warning and do not inconvenience drivers behind you.	$\{x_c^0 - x_c^i \ge \epsilon_x^{safe} v^0 \mid \forall i . x_c^0 - x_c^i \ge 0 \land y_c^i - y_c^0 < W\}$
4	Don't cross solid lines.	$\{\xi^\ell_x \leq x^0_c \leq \zeta^\ell_x \wedge -n_{right} \cdot W \leq y^0_c \leq 0 \mid 1 \leq \ell \leq n_{solid}\}$
5	Overtake on the left when it is safe.	$ \begin{split} &\{y_c^0 - y_c^i > W \land v^0 > v^i \mid \\ &\forall i \ . \ v^i > 0 \land x_c^0 - x_c^i \leq \epsilon_x^{overtake} \land \\ &\nexists j \ . (x_c^j - x_c^i \leq \epsilon_x^{safe-overtake} \land y_c^0 - y_c^j \leq W) \} \end{split} $
6	If another vehicle is trying to overtake you keep right and don't accelerate. If necessary, slow down and pull over.	$ \begin{aligned} & \{u_a^0 \leq 0 \land y_c^i - y_c^0 \geq W \land y_c^0 \leq 0 \mid \\ & \forall i \ . \ y_c^i - y_c^0 \leq 1.5W \land v^i > 0 \land x_c^i - x_c^0 \leq \epsilon_x^{overtake} \end{aligned} $
	If passing oncoming traffic, leave sufficient lateral space to not get hit. If ob- structed, slow down.	
8	Don't drive abnormally slowly such that you impede the progress of other vehi- cles. Don't drive above the speed limit or abnormally fast.	$\{ v^0 - \bar{v} \le \epsilon_v, v^0 \le \epsilon_v^{legal}\}\$

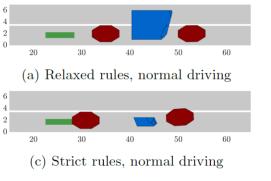
Normal Driving Style

Aggressive Driving Style

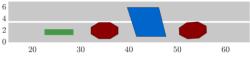
Table 2: Parameters used to model driver behaviors for the traffic cars.

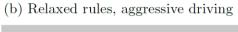
				ng Style
	Description	Symbol	Normal	Aggressive
IDM	Reference speed (m/s) Maximum acceleration (m/s ²) Comfortable deceleration (m/s ²) Minimum-desired net distance (m) Time headway to lead vehicle (s) Free-road exponent	$v_{ref} \ a \ b \ s_0 \ t_h \ \delta$	$10 \\ 1 \\ 3 \\ 1 \\ 0.1 \\ 4$	$ \begin{array}{r} 1.5 \\ 4 \\ 6 \\ 0.5 \\ 0.05 \\ 4 \end{array} $
Pure-Pursuit	Lookahead distance (m)	s_{look}	15	10
Perception	Range (m)	$s_{perceptio}$	100	100
Disturbances	Steering angle variance (rad^2) Acceleration variance (m^2/s^4)	$\sigma_\delta \ \sigma_a$	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	$5 \\ 2.5$

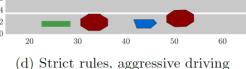




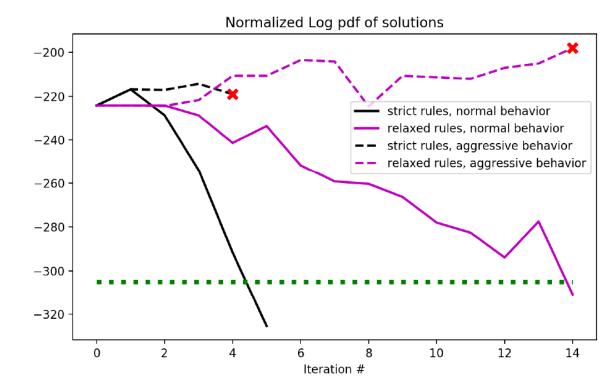
Results


• Multiple iterations, same rules



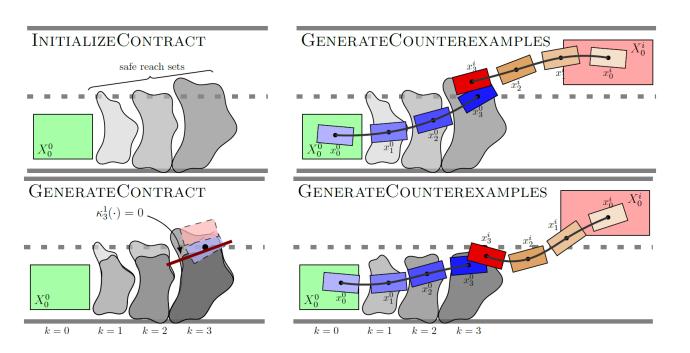

• Same iterations, different rules

Massachusetts Institute of Technology



Explainability

- Probabilistic Modelling of Agents
- Falsification is used to capture a wide array of likely counterexamples
- Probabilities help to assess the usefulness of contracts
- Rules allow to tune behaviors



Conclusion

- Probabilistic safety contracts through verification and falsification
- Scalability and explainability
- Outlook:
 - More scenarios
 - Advanced rules of the roads
 - Intuitive contracts → use logical predicates?

