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Abstract— An increasing amount of companies and cities
plan to become CO2-neutral, which requires them to invest
in renewable energies and carbon emission offsetting solutions.
One of the cheapest carbon offsetting solutions is preventing
deforestation in developing nations, a major contributor in
global greenhouse gas emissions. However, forest preservation
projects historically display an issue of trust and transparency,
which drives companies to invest in transparent, but expensive
air carbon capture facilities. Preservation projects could con-
duct accurate forest inventories (tree diameter, species, height
etc.) to transparently estimate the biomass and amount of
stored carbon. However, current rainforest inventories are too
inaccurate, because they are often based on a few expensive
ground-based samples and/or low-resolution satellite imagery.
LiDAR-based solutions, used in US forests, are accurate, but
cost-prohibitive, and hardly-accessible in the Amazon rainforest.
We propose accurate and cheap forest inventory analyses
through Deep Learning-based processing of drone imagery. The
more transparent estimation of stored carbon will create higher
transparency towards clients and thereby increase trust and
investment into forest preservation projects.

I. THE PROBLEM

Deforestation and forest degradation are responsible for
∼15% of global greenhouse gas emissions, as burning forest
releases stored carbon into the air [1]–[3]. Stopping deforesta-
tion and forest degradation and supporting sustainable forestry
hence mitigates climate change and also preserves biodiversity,
prevents flooding, controls soil erosion, reduces river siltation,
and offers a workplace for the local population [1]. Despite
the paramount importance of reforestation and preservation
efforts, they are far from sufficient, mostly because of a lack
of financing [1], [4]. This financial gap is created by a severe
lack of trust into reforestation and preservation projects as they
are not transparent in their CO2 impact to client companies
that want to offset carbon emissions [4], [5].

Forest inventories are common practice in forestry, account
for 25% of the expenses of reforestation and estimate stored
carbon [4]. Apart from carbon estimation, forest inventories
are also created to identify illegal logging, control pests
and diseases, estimate the opportunity cost of deforestation,
manage wildfire hazards, and achieve sustainable forestry.
Classical forest inventories are created through manually
counting and classifying trees in a ∼7−15m radius every
0.09−1km [4]. The sparse samples are interpolated, recently
with the help of satellite imagery, to create an inventory
for the whole forest. Ground-based sampling, however, is
prohibitively expensive (∼300USD/ha), and time-intensive
(2−7 days/20ha) in large-scale rainforests, due to dense
vegetation, a large team of experts, and scarcity of roads [4].

Purely satellite-based approaches mostly use publicly

Fig. 1: Medium-resolution drone imagery, collected during pilot
flights near San Ramón, Perú.

available RGB-NIR satellite imagery, or radar. As the low-
resolution (RGB max. 30cm/px, radar ∼250m/px) does not
suffice to accurately determine the tree count, species, or
height, most satellite-based approaches only measure area
covered by forest which leads to rough estimates of carbon
sequestering potential with high uncertainties [4], [6]. LiDAR-
based approaches, used in US forests, are very accurate,
but hardly-accessible and cost-prohibitive for low budget
reforestation and preservation projects, because of the expense
of the sensor and the bigger carrying drone, or plane [4], [7].

II. THE SOLUTION/INNOVATION

Our goal is to increase investment into reforestation and
preservation projects to combat climate change by providing
an accurate, cheap, and transparent carbon storage analysis.
The analysis is supplied to reforestation and preservation
projects that, with the analysis, have sufficient trust to
convince their client companies to higher investments.

A. Technical Solution

The proposed forest inventory assessment consists of an
on-site data collection and an off-site processing part. During
the data collection with the local partner, a low-cost quadrotor
(DJI Phantom 4 Pro, 1.5kUSD) and five batteries have to been
used to map 100ha in ∼5hrs with one operator (∼10USD/ha)
for Fig. 2. DroneDeploy was used to plan the flight and
mosaic the images. The next iteration will be an off-the-shelf,
low-cost vertical take off and landing (VTOL) fixed-wing
drone to cover up to 250ha in one 60min flight and launch
in dense forests. The drone will be equipped with a gimbal,
4k GoPro RGB camera, and a Sentera NDVI-IR camera.



Fig. 2: Collected map from pilot flights with the National Geograph-
ics Institute of Peru near San Ramón.

Deep Learning algorithms are proposed to extract crown
diameter, species, and count of emergent and canopy trees.
Specifically, a pixel-wise segmentation algorithm, based on
DeepLabv3+ [8], a Convolutional Neural Network (CNN)
architecture, will classify the tree species at each pixel of the
collected RGB-NIR imagery and extract crown diameter and
tree count. The expected success of the algorithm assumes that
a canopy’s RGB-NIR spectrum and shape strongly correlate
with the tree species. The correlation is shown for high-
resolution sensors in [9], [10], but needs to be validated with
the available low-cost sensors in future results. Additionally,
a Bayesian regression model with spatial random effects [11]
with the same in- and outputs is being developed to increase
overall accuracy via model ensembling, and counteract the
inaccuracy of the CNN model on novel data.

In addition to crown diameter and species, the estimation
of forest carbon stocks requires canopy heights (distance
from ground to canopy). Canopy heights cannot be accurately
inferred from drone imagery, because visibility of the forest
floor is prohibited by dense vegetative cover. Hence, a digital
surface model (DSM) of the surface heights (distance from
sea level to canopy), based on GPS, IMU, and structure
from motion was created with the DroneDeploy software. A
satellite-based digital elevation/terrain model (DEM) (distance
from sea level to ground) will be subtracted from the DSM to
obtain the canopy height model (CHM). The accuracy of the
approach will be benchmarked on ground-based inventories.

Allometric equations can be used to calculate forest
biomass and carbon stocks, from canopy height, crown
diameter, and species [6], [12]. The accuracy of multiple
allometric equations for tropical rainforest, and Andean
rainforests that do or do not contain information about the
tree species [13] will be evaluated.

An accurate, but small dataset [14] with tree height, species
and crown segmentation is used. A larger dataset will be cre-
ated by fusing ground-based and remotely sensed inventories
of well studied forests (e.g., US national forests [16]).

B. Partnerships

• A very close connection to a local community partner,
which offers 100 hectares of rainforest in San Ramón,
Perú as testing ground has been established. The com-

munity partner visits local mayors, and schools, and
creates social media initiatives to reduce deforestation.
The partner has started a small-scale reforestation project.

• NGOs and ministries have been visited to access data,
co-develop software, and deploy it at scale

• We are continuously reaching out to gain knowledge in
Forestry, Citizen Science, and Remote Sensing.

C. Scalability
As the approach is scaled to larger areas of forest, the

local communities will be involved in the monitoring of
preservation projects to make them feel responsible and
technologically capable to protect their forest. To do so, an
app will be developed that allows locals to map forests and
scale up the data collection nationally. The app will be rolled
out to the community partners’ network of volunteers and
local municipalities that possess a drone.

For the long-term, the cheap, and accurate ML-based
carbon inventories are proposed to be embedded as standard
in the cap-and-trade carbon market. The California Air
Resources Board currently considers a bill to integrate
CO2 offsets from tropical reforestation. This would allow
reforestation and preservation projects to earn 10−15 USD
per ton of sequestered CO2 and incentivize locals, strongly
concerned about monetary aspects, to sustain primary forests.
Forests would be a competitive carbon offsetting choice,
because they store a ton of CO2 at roughly 20−25USD (6−8
trees; one tree costs ∼3 USD (30% seedling, 45% labour, 25%
monitoring)) [4], whereas carbon capturing plants convert
CO2 at a price of 94−232 USD/tCO2 [17].

The proposed method to infer forest inventories can also
help reduce illegal logging. Timber companies are alloted
internationally salable trees based on forest inventories of
their land. The inventories, however, can be untruthfully
overestimated, and companies sell rare and valuable trees
from outside of their land. The proposed method can be used
to cheaply verify the reported inventories of tree species.

III. IMPACT

Although mitigating climate change is this project’s main
goal, success is measured via the UN sustainable development
goal 15.1.1, the “ratio of total land covered by forest“, to
incorporate the beneficial side effects of forest cover. As
this project is trying to increase the amount of trust und
understanding that people have for carbon offsetting initiatives,
e.g. reforestation, it is trying to change the bigger system.
While at the beginning, it would be a success to increase
investment into one offsetting project, the project aims for
a large scale impact where people are more aware of how
much effort it takes to offset their emissions, make them
more environmentally conscious, and make investments into
reforestation for carbon offsetting a standard.

A. Ethical considerations
• An accurate forest inventory must be stored securely to

prevent misuse for finding and logging rare trees
• Best practices for wildlife monitoring are respected [18]
• Drone flights must be restricted via GPS to only fly over

approved government or private land
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