Compositional and Contract-based Verification for Autonomous Driving on Road Networks

Lucas Liebenwein, Wilko Schwarting, Cristian-Ioan Vasile, Jonathan DeCastro, Javier Alonso-Mora, Sertac Karaman, Daniela Rus

lucasl@mit.edu

How can we obtain safety guarantees?

Problem Definition

	Verification Components	
System	Model	Specification – Controller Contract ${\cal S}$
• Controller: $\mathbf{u}_{k} = C(\mathbf{z}_{k}^{0:N}),$ where \mathbf{z}_{k}^{i} is state of car i at time k with The controller is assumed to abide by the controller contract S .		

Problem Definition

Verification Components			
System	Model	Specification – Controller Contract ${\mathcal S}$	
• Controller: $\mathbf{u}_k = C(\mathbf{z}_k^{0:N}),$ where \mathbf{z}_k^i is state of car i at time k with The controller is assumed to abide by the controller contract S .	• Ego-Car: $V = (Z, \mathcal{R}, \mathcal{U}, f, h)$ with $z_{k+1} = f(z_k)$, where $\dot{z} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\delta} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} v\cos(\theta) \\ v\sin(\theta) \\ \frac{v}{L}\tan(\delta) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{ \left[u^{\delta} \\ u^{a} \right] } u^{\delta}$ • Road Geometries: $m = (Z, \Im, \mathfrak{D}, S, A)$ • Straight Roads • Intersections • Traffic Model: $T = (\mathcal{V}(0), \Im, \mathfrak{D}, S)$ • Spline Representation • Traffic Scheduler		

Problem Definition

SystemModelSpecification – Controller Control• Ego-Car: $V = (Z, \mathcal{R}, \mathcal{U}, f, h)$ with $z_{k+1} = f(z_k)$, where• Safety: infinf	Verification Components				
• Ego-Car: $V = (Z, \mathcal{R}, \mathcal{U}, f, h)$ with $z_{k+1} = f(z_k)$, where $[\dot{x}] = [vcos(\theta)] = [0, 0]$ • Safety: $inf z - \theta > \pi_{cafforty}$	System	Model	Specification – Controller Contract ${\mathcal S}$		
• Controller: $\mathbf{u}_{k} = C(\mathbf{z}_{k}^{0:N}),$ where \mathbf{z}_{k}^{i} is state of car i at time k with The controller is assumed to abide by the controller contract S . • Road Geometries: $m = (\mathbb{Z}, \mathfrak{I}, \mathfrak{D}, S, A)$ • Straight Roads • Intersections • Traffic Model: $T = (\mathcal{V}(0), \mathfrak{I}, \mathfrak{D}, S)$ • Spline Representation • Traffic Scheduler • Controller is assumed to abide by the controller is assumed to abide by the controller is assumed to abide by the controller contract S .	• Controller: $\mathbf{u}_k = C(\mathbf{z}_k^{0:N}),$ where \mathbf{z}_k^i is state of car i at time k with The controller is assumed to abide by the controller contract S .	• Ego-Car: $V = (Z, \mathcal{R}, \mathcal{U}, f, h)$ with $z_{k+1} = f(z_k)$, where $\dot{z} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\delta} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} v\cos(\theta) \\ v\sin(\theta) \\ \frac{v}{L}\tan(\delta) \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \underbrace{ u^{\delta} \\ u^{a} \\ u^{a} \end{bmatrix} $ • Road Geometries: $m = (Z, \Im, \mathfrak{D}, S, A)$ • Straight Roads • Intersections • Traffic Model: $T = (\mathcal{V}(0), \Im, \mathfrak{D}, S)$ • Spline Representation • Traffic Scheduler	 Safety: inf z∈B(z_k),o∈O_k z - 0 > π_{safety} Speed Limit: v ≤ v_{max} Dynamic Limitation: δ ≤ δ_{max}, u^δ ≤ δ_{max}, u^δ ≤ δ_{max}, a_{min} ≤ u^a ≤ a_{max} 		

Technical Challenges

- Verification is HARD
- Computational tractability often not feasible
- Model complexity increases cost
- Realistic scenarios requires scalable models

Technical Challenges

- Verification is HARD
- Computational tractability often not feasible
- Model complexity increases cost
- Realistic scenarios requires scalable models

How do we maintain computational tractability while capturing realistic scenarios?

Related Work

- Backwards Reachability from Goal
- Formulation as Hamilton-Jacobi PDE
- Solution over Discretized State Space

Althoff, M., et.al.^[3]

- Online Verification of Planned
 Maneuvers
- Rough Approximations for Reachable Sets
- Safe Backup Trajectory

Erlien, S.M., et.al.^[4]

- Shared Steering Control
- Safety Guarantees through Dynamical and Road Constraints
- MPC Looks for Possible Trajectory to Ensure Safety

[2] Mitchell, I.M., et. al.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)
 [3] Althoff, M., et.al.: Online Verification of Automated Road Vehicles Using Reachability Analysis. IEEE Trans. Robotics 30(4), 903–918 (2014)
 [4] Erlien, S.M., et. Al.: Shared steering control using safe envelopes for obstacle avoidance and vehicle stability. IEEE Transactions on Intelligent Transportation Systems 17(2), 441–451 (2016)

Related Work

Mitchell, I.M., et. al.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)
 Althoff, M., et.al.: Online Verification of Automated Road Vehicles Using Reachability Analysis. IEEE Trans. Robotics 30(4), 903–918 (2014)
 Erlien, S.M., et. Al.: Shared steering control using safe envelopes for obstacle avoidance and vehicle stability. IEEE Transactions on Intelligent Transportation Systems 17(2), 441–451 (2016)

12/14/2017

Two Step Approach

Local Verification – Results

Local Verification – Results

Global Guarantees – Results

Global Guarantees – Results

Compositional and Contract-based Verification for Autonomous Driving on Road Networks

Lucas Liebenwein, Wilko Schwarting, Cristian-Ioan Vasile, Jonathan DeCastro, Javier Alonso-Mora, Sertac Karaman, Daniela Rus

lucasl@mit.edu

