

Sampling-based Approximation Algorithms for Reachability Analysis with Provable Guarantees

Lucas Liebenwein*, Cenk Baykal*, Igor Gilitschenski, Sertac Karaman, Daniela Rus Distributed Robotics Lab, CSAIL, MIT

* Both authors contributed equally

Motion Planning – What We Wish For

Karaman, Sertac, et al. "Sampling-based algorithms for optimal motion planning." IJRR 2011.

Murray, Sean, et al. "Robot Motion Planning on a Chip." RSS. 2016.

Motion Planning – What We Have

The New Nation, 06/28/2015

http://www.squirrel-project.eu/objectives.html

Reachability Analysis for Online Verification

Infeasible Plan

Feasible Plan

Objective

For given timestep T, initial set \mathcal{X} , dynamics h(x, u)find reachable set $F(\mathcal{X}; T)$

Objective

For a reachable set $F(\mathcal{X}; T)$, generate a subset $S \subset \mathcal{X}$ such that $(1 - \varepsilon)\mu(F(\mathcal{X}; T)) \le \mu(F(S; T)) \le \mu(F(\mathcal{X}; T))$

Main Challenge

Evaluating reachability involves reasoning about

- Initial sets and how they evolve with respect to $F(\cdot; T)$
- State space and curse of dimensionality
- Trade-off between computation time and accuracy

In general, reachable sets cannot be evaluated (exactly) within a feasible amount of time

Related Work

Liu, S.B., et al. (2017)

Erlien, S.M., et al. (2016)

Althoff, M., et al. (2014)

Initial set ${\mathcal X}$

Reachable set F(X;T)

Method

Initial set ${\mathcal X}$

Reachable set F(X;T)

Reachable Set from δ -Packing

Reachable Set from δ -Packing

Results: Dubin's Car with Various Initial Sets

Our approximation Uniform approximation — True reachable set Initial set — Theoretical guarantee

Sampling-based Approximation Algorithms for Reachability Analysis with Provable Guarantees

Lucas Liebenwein*, Cenk Baykal*, Igor Gilitschenski, Sertac Karaman, Daniela Rus Distributed Robotics Lab, CSAIL, MIT

* Both authors contributed equally

