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Closed-form continuous-time neural 
networks
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Continuous-time neural networks are a class of machine learning systems 
that can tackle representation learning on spatiotemporal decision-making 
tasks. These models are typically represented by continuous differential 
equations. However, their expressive power when they are deployed on 
computers is bottlenecked by numerical differential equation solvers. 
This limitation has notably slowed down the scaling and understanding of 
numerous natural physical phenomena such as the dynamics of nervous 
systems. Ideally, we would circumvent this bottleneck by solving the given 
dynamical system in closed form. This is known to be intractable in general. 
Here, we show that it is possible to closely approximate the interaction 
between neurons and synapses—the building blocks of natural and artificial 
neural networks—constructed by liquid time-constant networks efficiently 
in closed form. To this end, we compute a tightly bounded approximation 
of the solution of an integral appearing in liquid time-constant dynamics 
that has had no known closed-form solution so far. This closed-form 
solution impacts the design of continuous-time and continuous-depth 
neural models. For instance, since time appears explicitly in closed 
form, the formulation relaxes the need for complex numerical solvers. 
Consequently, we obtain models that are between one and five orders of 
magnitude faster in training and inference compared with differential 
equation-based counterparts. More importantly, in contrast to ordinary 
differential equation-based continuous networks, closed-form networks 
can scale remarkably well compared with other deep learning instances. 
Lastly, as these models are derived from liquid networks, they show good 
performance in time-series modelling compared with advanced recurrent 
neural network models.

Continuous neural network architectures built by ordinary differential 
equations (ODEs)2 are expressive models useful in modelling data with 
complex dynamics. These models transform the depth dimension of 
static neural networks and the time dimension of recurrent neural 
networks (RNNs) into a continuous vector field, enabling parameter 

sharing, adaptive computations and function approximation for 
non-uniformly sampled data.

These continuous-depth (time) models have shown promise in 
density estimation applications3–6, as well as modelling sequential and 
irregularly sampled data1,7–9.
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nonlinear transmission of neurotransmitters, the probability of activa-
tion of receptors and the concentration of available neurotransmitters, 
among other nonlinearities (see S(t) in Fig. 1) and (3) the propagation 
of information between neurons is induced by feedback and memory 
apparatuses (see how I(t) stimulates x(t) through a nonlinear synapse 
S(t) which also has a multiplicative difference of potential to the post-
synaptic neuron accounting for a negative feedback mechanism). 
One could read I(t) as a mixture of exogenous input to the (neural) 
network and presynaptic inputs from other neurons that result in a 
depolarization x(t). This depolarization is mediated by the current 
S(t) that depends upon depolarization and a reversal threshold A. LTC 
networks1, which are expressive continuous-depth models obtained by 
a bilinear approximation20 of a neural ODE formulation2, are designed 
on the basis of these mechanisms. Correspondingly, we take their ODE 
semantics and approximate a closed-form solution for the scalar case of 
a postsynaptic neuron receiving an input stimulus from a presynaptic 
source through a nonlinear synapse.

To this end, we apply the theory of linear ODEs21 to analytically solve 
the dynamics of an LTC DE as shown in Fig. 1. We then simplify the solu-
tion to the point where there is one integral left to solve. This integral 
compartment, ∫t0 f(I(s))ds in which f is a positive, continuous, monotoni-
cally increasing and bounded nonlinearity, is challenging to solve in 
closed form since it has dependencies on an input signal I(s) that is 
arbitrarily defined (such as real-world sensory readouts). To approach 
this problem, we discretize I(s) into piecewise constant segments and 
obtain the discrete approximation of the integral in terms of the sum 
of piecewise constant compartments over intervals. This piecewise 
constant approximation inspired us to introduce an approximate 
closed-form solution for the integral ∫t0 f(I(s))ds that is provably tight 
when the integral appears as the exponent of an exponential decay, 
which is the case for LTCs. We theoretically justify how this closed-form 
solution represents LTCs’ ODE semantics and is as expressive (Fig. 1).

Explicit time dependence
We then dissect the properties of the obtained closed-form solution and 
design a new class of neural network models we call closed-form 
continuous-depth networks (CfC). CfCs have an explicit time dependence 
in their formulation that does not require a numerical ODE solver to obtain 
their temporal rollouts. Thus, they maximize the trade-off between accu-
racy and efficiency of solvers. Formally, this property corresponds to 
obtaining lower time complexity for models without numerical insta-
bilities and errors as illustrated in Table 1 (left). For example, Table 1 (left) 
shows that the complexity of a pth-order numerical ODE solver is 𝒪𝒪(Kp), 
where K is the number of ODE steps, while a CfC system (which has explicit 
time dependence) requires 𝒪𝒪(K̃), where K is the exogenous input time 
steps, which are typically one to three orders of magnitude smaller than 
K. Moreover, the approximation error of a pth-order numerical ODE solver 
scales with 𝒪𝒪(ϵp+1), whereas CfCs are closed-form continuous-time sys-
tems, thus the notion of approximation error becomes irrelevant to them.

While ODE-based neural networks with careful memory and gradi-
ent propagation design9 perform competitively with advanced discre-
tized recurrent models on relatively small benchmarks, their training 
and inference are slow owing to the use of advanced numerical differ-
ential equation (DE) solvers10. This becomes even more troublesome 
as the complexity of the data, task and state space increases (that is, 
requiring more precision)11, for instance, in open-world problems such 
as medical data processing, self-driving cars, financial time-series and 
physics simulations.

The research community has developed solutions for resolving 
this computational overhead and for facilitating the training of neural 
ODEs, for instance by relaxing the stiffness of a flow by state augmenta-
tion techniques4,12, reformulating the forward pass as a root-finding 
problem13, using regularization schemes14–16 or improving the inference 
time of the network17.

Here, we derive a closed-form continuous-depth model that has 
the modelling capabilities of ODE-based models but does not require 
any solver to model data (Fig. 1).

Intuitively, in this work, we replace the integration (that is, solu-
tion) of a nonlinear DE describing the interaction of a neuron with its 
input nonlinear synaptic connections, with their corresponding non-
linear operators. This could be achieved in principle using functional 
Taylor expansions (in the spirit of the Volterra series)18. However, in 
the particular case of liquid time-constant (LTC) networks, we can 
leverage a closed-form expression for the system’s response to input. 
This allows one to evaluate the system’s response to exogenous input 
(I) and recurrent inputs from hidden states (x) as a function of time. 
One way of looking at this is to regard the closed-form solution as the 
application of a nonlinear forward operator to the inputs of each hid-
den state or neuron in the network, where the outputs of one neuron 
constitute the inputs for others. Effectively, this rests on approximating 
a conductance-based model with a neural mass model, of the kind used 
in the dynamic causal modelling of real neuronal networks19.

The proposed continuous neural networks yield considerably 
faster training and inference speeds while being as expressive as their 
ODE-based counterparts. We provide a derivation for the approximate 
closed-form solution to a class of continuous neural networks that explic-
itly models time. We demonstrate how this transformation can be formu-
lated into a novel neural model and scaled to create flexible, performant 
and fast neural architectures on challenging sequential datasets.

Deriving an approximate closed-form solution for neural 
interactions
Two neurons interact with each other through synapses as shown in 
Fig. 1. There are three principal mechanisms for information propaga-
tion in natural brains that are abstracted away in the current building 
blocks of deep learning systems: (1) neural dynamics are typically con-
tinuous processes described by DEs (see the dynamics of x(t) in Fig. 1),  
(2) synaptic release is much more than scalar weights, involving a 
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Fig. 1 | Neural and synapse dynamics. A postsynaptic neuron receives the 
stimuli I(t) through a nonlinear conductance-based synapse model. Here, S(t) 
stands for the synaptic current. The dynamics of the membrane potential of this 
postsynaptic neuron are given by the DE presented in the middle. This equation 

is a fundamental building block of LTC networks1, for which there is no known 
closed-form expression. Here, we provide an approximate solution for this 
equation which shows the interaction of nonlinear synapses with postsynaptic 
neurons in closed form.
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This explicit time dependence allows CfCs to perform computa-
tions at least one order of magnitude faster in terms of training and 
inference time compared with their ODE-based counterparts, without 
loss of accuracy.

Sequence and time-step prediction efficiency
In sequence modelling tasks, one can perform predictions based on an 
entire sequence of observations, or perform auto-regressive modelling 
where the model predicts the next time-step output given the current 
time-step input. Table 1 (right) depicts the time complexity of different 
neural network instances at inference, for a given sequence of length 
n and a neural network of k number of hidden units. We observe that 
the complexity of ODE-based networks and Transformer modules is at 
least an order of magnitude higher than that of discrete RNNs and CfCs 
in both sequence prediction and auto-regressive modelling (time-step 
prediction) frameworks.

This is desirable because not only do CfCs establish a continuous 
flow similar to ODE models1 to achieve better expressivity in representa-
tion learning but they do so with the efficiency of discrete RNN models.

CfCs: flexible deep models for sequential tasks
Additionally, CfCs are equipped with novel time-dependent gat-
ing mechanisms that explicitly control their memory. CfCs are as 
expressive as their ODE-based peers and can be supplied with mixed 
memory architectures9 to avoid gradient issues in sequential data 
processing applications with long-range dependences. Beyond 
accuracy and performance metrics, our results indicate that, when 
considering accuracy per compute time, CfCs exhibit over 150 fold 
improvements over ODE-based compartments. We perform a diverse 
set of advanced time-series modelling experiments and present 
the performance and speed gain achievable by using CfCs in tasks 
with long-term dependences, irregular data and modelling physical 
dynamics, among others.

Deriving a closed-form solution
In this section, we derive an approximate closed-form solution for 
LTC networks, an expressive subclass of time-continuous models. We 
discuss how the scalar closed-form expression derived from a small LTC 
system can inspire the design of CfC models. In this regard, we define 
the LTC semantics. We then state the main theorem that computes a 
closed-form approximation of a given LTC system for the scalar case. To 
prove the theorem, we first find the integral solution of the given LTC 
ODE system. We then compute a closed-form analytical solution for the 
integral solution for the case of piecewise constant inputs. Afterward, 
we generalize the closed-form solution of the piecewise constant inputs 
to the case of arbitrary inputs with our novel approximation and finally 
provide sharpness results (that is, measure the rate and accuracy of an 
approximation error) for the derived solution.

The hidden state of an LTC network is determined by the solution 
of the following initial value problem (IVP)1:

dx
dt

= − [wτ + f(x, I,θ)] ⊙ x(t) + A⊙ f(x, I,θ), (1)

where at a time step t, x(D×1)(t) defines the hidden state of a LTC layer 
with D cells, and I(m×1)(t) is an exogenous input to the system with m 
features. Here, w(D×1)

τ  is a time-constant parameter vector, A(D×1) is a bias 
vector, f is a neural network parametrized by θ and ⊙ is the Hadamard 
product. The dependence of f(.) on x(t) denotes the posibility of having 
recurrent connections.

The full proof of theorem 1 is given in Methods. The theorem for-
mally demonstrates that the approximated closed-form solution for the 
given LTC system is given by equation (2) and that this approximation 
is tightly bounded with bounds given in the proof.

In the following, we show an illustrative example of this tightness 
result in practice. To do this, we first present an instantiation of LTC 
networks and their approximate closed-form expressions. Extended 
Data Fig. 1 shows a liquid network with two neurons and five synaptic 
connections. The network receives an input signal I(t). Extended Data 
Fig. 1 further derives the DE expression for the network along with its 
closed-form approximate solution. In general, it is possible to com-
pile an LTC network into its closed-form expression as illustrated in 
Extended Data Fig. 1. This compilation can be performed using Algo-
rithm 1 provided in Methods.

Theorem 1
Given an LTC system determined by the IVP in equation (1), constructed by 
one cell, receiving a single-dimensional time-series exogenous input I(t) 
with no self-connections, the following expression is an approximation 
of its closed-form solution:

x(t) ≈ (x0 − A)e−[wτ+f(I(t),θ)]tf(−I(t),θ) + A. (2)

Tightness of the closed-form solution in practice
Figure 2 shows an LTC-based network trained for autonomous driving22. 
The figure further illustrates how close the proposed solution fits the 
actual dynamics exhibited from a single-neuron ODE given the same 
parametrization. The details of this experiment are given in Methods.

We next show how to design a novel neural network instance 
inspired by this closed-form solution that has well-behaved gradient 
properties and approximation capabilities.

Designing CfC models from the solution
Leveraging the scalar closed-form solution expressed by equation (2), 
we can now distil this model into a neural network model that can be 
trained at scale. The solution provides a grounded theoretical basis 

Table 1 | Computational complexity of models

Time complexity Sequence and time-step prediction complexity

Method Complexity Local error Model Sequence prediction Time-step prediction

pth-order solver 𝒪𝒪(Kp) 𝒪𝒪(ϵp+1) RNN 𝒪𝒪(nk) 𝒪𝒪(k)

Adaptive-step solver — 𝒪𝒪(ϵ̃p+1) ODE-RNN 𝒪𝒪(nkp) 𝒪𝒪(kp)

Euler hypersolver 𝒪𝒪(K) 𝒪𝒪(δϵ2) Transformer 𝒪𝒪(n2k) 𝒪𝒪(nk)

pth-order hypersolver 𝒪𝒪(Kp) 𝒪𝒪(δϵp+1) CfC 𝒪𝒪(nk) 𝒪𝒪(k)

CfC (current work) 𝒪𝒪(K̃) Not relevant

Left: The time complexity of the process to compute K solver steps. ϵ is step size. ϵ̃ is the maximum step size and δ ≪ 0. K̃ is the time steps for CfCs corresponding to the input time step, which 
is typically one to three orders of magnitude smaller than K. The left portion is reproduced with permission from ref. 17. Right: Sequence and time-step prediction complexity. n is the sequence 
length. k is the number of hidden units. p is the order of the ODE solver.
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for solving scalar continuous-time dynamics, and it is important to 
translate this theory into a practical neural network model which can 
be integrated into larger representation learning systems equipped 
with gradient descent optimizers. Doing so requires careful atten-
tion to potential gradient and expressivity issues that can arise during 
optimization, which we will outline in this section.

Formally, the hidden states, x(t)(D×1) with D hidden units at each 
time step t, can be obtained explicitly as

x(t) = B⊙ e−[wτ+f(x,I;θ)]t ⊙ f(−x, −I;θ) + A, (3)

where B(D) collapses (x0 − A) of equation (2) into a parameter vector. A(D) 
and w(D)

τ  are system’s parameter vectors, while I(t)(m×1) is an 
m-dimensional input at each time step t, f is a neural network para-
metrized by θ = {W(m×D)

Ix ,W(D×D)
xx ,b(D)x }  and ⊙  is the Hadamard 

(element-wise) product. While the neural network presented in equa-
tion (3) can be proven to be a universal approximator as it is an approx-
imation of an ODE system1,2, in its current form, it has trainability issues 
which we point out and resolve shortly.

Resolving the gradient issues
The exponential term in equation (3) drives the system’s first part 
(exponentially fast) to 0 and the entire hidden state to A. This issue 
becomes more apparent when there are recurrent connections and 
causes vanishing gradient factors when trained by gradient descent23. 
To reduce this effect, we replace the exponential decay term with a 
reversed sigmoidal nonlinearity σ(.). This nonlinearity is approximately 
1 at t = 0 and approaches 0 in the limit t → ∞. However, unlike exponential 
decay, its transition happens much more smoothly, yielding a better 
condition on the loss surface.

Replacing biases by learnable instances
Next, we consider the bias parameter B to be part of the trainable param-
eters of the neural network f( − x, − I; θ) and choose to use a new network 
instance instead of f (presented in the exponential decay factor). We 

also replace A with another neural network instance, h(. ) to enhance the 
flexibility of the model. To obtain a more general network architecture, 
we allow the nonlinearity f(−x, −I; θ) present in equation (3) to have both 
shared (backbone) and independent (g(. )) network compartments.

Gating balance
The time-decaying sigmoidal term can play a gating role if we addition-
ally multiply h(. ) with (1 − σ(. )). This way, the time-decaying sigmoid 
function stands for a gating mechanism that interpolates between the 
two limits of t → −∞ and t → ∞ of the ODE trajectory.

Backbone
Instead of learning all three neural network instances f, g and h sepa-
rately, we have them share the first few layers in the form of a backbone 
that branches out into these three functions. As a result, the backbone 
allows our model to learn shared representations, thereby speeding up 
and stabilizing the learning process. More importantly, this architec-
tural prior enables two simultaneous benefits: (1) Through the shared 
backbone, a coupling between the time constant of the system and its 
state nonlinearity is established that exploits causal representation 
learning evident in a liquid neural network1,24. (2) through separate 
head network layers, the system has the ability to explore temporal 
and structural dependences independently of each other.

These modifications result in the CfC neural network model:

x(t) = σ(−f(x, I;θf)t)⏟⎵⎵⎵⏟⎵⎵⎵⏟
time-continuous gating

⊙g(x, I;θg) + [1 − σ(−[f(x, I;θf)]t)]⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
time-continuous gating

⊙h(x, I;θh).

(4)

The CfC architecture is illustrated in Extended Data Fig. 2. The neu-
ral network instances could be selected arbitrarily. The time complexity 
of the algorithm is equivalent to that of discretized recurrent net-
works25, being at least one order of magnitude faster than ODE-based 
networks.

The procedure to account for the explicit time dependence
CfCs are continuous-depth models that can set their temporal behav-
iour based on the task under test. For time-variant datasets (for exam-
ple, irregularly sampled time series, event-based data and sparse data), 
the t for each incoming sample is set based on its time stamp or order. 
For sequential applications where the time of the occurrence of a sam-
ple does not matter, t is sampled as many times as the batch length, with 
equidistant intervals within two hyperparameters a and b.

Experiments with CfCs
We now assess the performance of CfCs in a series of sequential data 
processing tasks compared with advanced, recurrent models. We 
first approach solving conventional sequential data modelling tasks 
(for example, bit-stream prediction, sentiment analysis on text data, 
medical time-series prediction, human activity recognition, sequential 
image processing and robot kinematics modelling), and compare CfC 
variants with an extensive set of advanced RNN baselines. We then 
evaluate how CfCs compare with LTC-based neural circuit policies 
(NCPs)22 in real-world autonomous lane-keeping tasks.

CfC network variants
To evaluate the proposed modifications we applied to the closed-form 
solution network described by equation (3), we test four variants of the 
CfC architecture: (1) the closed-form solution network (Cf-S) obtained 
by equation (3), (2) the CfC without the second gating mechanism 
(CfC-noGate), a variant that does not have the 1 − σ instance shown in 
Extended Data Fig. 2, (3) The CfC model (CfC) expressed by equation 
(4) and (4) the CfC wrapped inside a mixed memory architecture (that 
is, where the CfC defines the memory state of an RNN, for instance, 
a long short-term memory (LSTM)), a variant we call CfC-mmRNN.  
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LTC module

Input stream

Dynamics of each node

Time (s)
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Fig. 2 | Tightness of the closed-form solution in practice. We approximate a 
closed-form solution for LTC networks1 while largely preserving the trajectories 
of their equivalent ODE systems. We develop our solution into CfC models that 
are at least 100 fold faster than neural ODEs at both training and inference on 
complex time-series prediction tasks.
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Each of these four proposed variants leverages our proposed solution 
and thus is at least one order of magnitude faster than continuous-time 
ODE models.

To investigate their representation learning power, in the following 
we extensively evaluate CfCs on a series of sequence modelling tasks. 
The objective is to test the effectiveness of the CfCs in learning spati-
otemporal dynamics, compared with a wide range of advanced models.

Baselines
We compare CfCs with a diverse set of advanced algorithms developed 
for sequence modelling by both discretized and continuous mecha-
nisms. These baselines are given in full in Methods.

Human activity recognition
The human activity dataset7 contains 6,554 sequences of humans dem-
onstrating activities such as walking, lying, sitting, etc. The input space 
is formed of 561-dimensional inertial sensor measurements per time 
step, recorded from the user’s smartphone26, being categorized into 
six group of activities (per time step) as output.

We set up our dataset split (training, validation and test) to care-
fully reflect the modifications made by Rubanova et al.7 on this task. 
The results of this experiment are reported in Table 2. We observe 
that not only do the CfC variants Cf-S, CfC-noGate and CfC-mmRNN 
outperform other models with a high margin, but they do so with a 
speed-up of more than 8,752% over the best-performing ODE-based 
instance (Latent-ODE-ODE). The reason for such a large speed dif-
ference is the complexity of the dataset dynamics that causes the 
ODE solvers of ODE-based models such as Latent-ODE-ODE to com-
pute many steps upon stiff dynamics. This issue does not exist for 
closed-form models as they do not use any ODE solver to account 
for dynamics. The hyperparameter details of this experiment are 
provided in Extended Data Fig. 3.

Physical dynamics modelling
The Walker2D dataset consists of kinematic simulations of the MuJoCo 
physics engine27 (see Methods for more details). As shown in Table 3, 
CfCs outperform the other baselines by a large margin, supporting 
their strong capability to model irregularly sampled physical dynamics 
with missing phases. It is worth mentioning that, on this task, CfCs even 
outperform transformers by a considerable, 18% margin. The hyperpa-
rameter details of this experiment are provided in Extended Data Fig. 3.

Event-based sequential image processing
We next assess the performance of CfCs on a challenging sequential 
image processing task. This task is generated from the sequential modi-
fied National Institute of Standards and Technology (MNIST) dataset 
following the steps described in Methods. Moreover, the hyperparam-
eter details of this experiment are provided in Extended Data Fig. 4.

Table 4 summarizes the results on this event-based sequence 
classification task. We observe that models such as ODE-RNN, CT-RNN, 
GRU-ODE and LSTMs struggle to learn a good representation of the 
input data and therefore show poor performance. In contrast, RNNs 
endowed with explicit memory, such as bi-directional RNNs, GRU-D, 
Lipschitz RNN, coRNN, CT-LSTM and ODE-LSTM, perform well on 
this task. All CfC variants perform well on this task and establish the 
state-of-the-art on this task, with CfC-mmRNN achieving 98.09% and 
CfC-noGate achieving 96.99% accuracy in classifying irregularly sam-
pled sequences. It is worth mentioning that they do so around 200–
400% faster than ODE-based models such as GRU-ODE and ODE-RNN.

Regularly and irregularly sampled bit-stream XOR
The bit-stream XOR dataset9 considers the classification of bit streams 
by implementing an XOR function in time. That is, each item in the 
sequence contributes equally to the correct output. The details are 
given in Methods.

Extended Data Fig. 5 compares the performance of many RNN 
baselines. Many architectures such as Augmented LSTM, CT-GRU, 
GRU-D, ODE-LSTM, coRNN and Lipschitz RNN, and all variants of CfC, 
can successfully solve the task with 100% accuracy when the bit-stream 
samples are equidistant from each other. However, when the bit-stream 
samples arrive at non-uniform distances, only architectures that are 
immune to the vanishing gradient in irregularly sampled data can solve 
the task. These include GRU-D, ODE-LSTM, CfC and CfC-mmRNNs. 
ODE-based RNNs cannot solve the event-based encoding tasks regard-
less of their choice of solvers, as they have vanishing/exploding gradi-
ent issues9. The hyperparameter details of this experiment are provided 
in Extended Data Fig. 4.

PhysioNet Challenge
The PhysioNet Challenge 2012 dataset considers the prediction of the 
mortality of 8,000 patients admitted to the intensive care unit. The 
features represent time series of medical measurements taken dur-
ing the first 48 h after admission. The data are irregularly sampled in 
time and over features, that is, only a subset of the 37 possible features 
is given at each time point. We perform the same test–train split and 
preprocessing as in ref. 7, and report the area under the curve (AUC) 
on the test set as a metric in Extended Data Fig. 6. We observe that 
CfCs perform competitively to other baselines while performing 160 
times faster in terms of training time compared with ODE-RNN and 
220 times compared with continuous latent models. CfCs are also, on 
average, three times faster than advanced discretized gated recurrent 
models. The hyperparameter details of this experiment are provided 
in Extended Data Fig. 7.

Sentiment analysis using IMDB
The Internet Movie Database (IMDB) sentiment analysis dataset28 con-
sists of 25,000 training and 25,000 test sentences (see Methods for 
more details). Extended Data Fig. 8 shows how CfCs equipped with 
mixed memory instances outperform advanced RNN benchmarks. The 
hyperparameter details of this experiment are provided in Extended 
Data Fig. 7.

Performance of CfCs in autonomous driving
In this experiment, our objective is to evaluate how robustly CfCs 
learn to perform autonomous navigation in comparison with their 
ODE-based counterparts, LTC networks. The task is to map incoming 

Table 2 | Human activity recognition, per time-step 
classification

Model Accuracy (%) Time per epoch 
(min)

†RNN-Impute7 79.50 ± 0.8 0.38

†RNN-Δt7 79.50 ± 0.8 0.45

†RNN-Decay7 80.00 ± 1.0 0.39

†GRU-D51 80.60 ± 0.7 0.15

†RNN-VAE7 34.30 ± 4.0 2.63

†Latent-ODE-RNN7 83.50 ± 1.0 7.71

†ODE-RNN7 82.90 ± 1.6 3.15

†Latent-ODE-ODE7 84.60 ± 1.3 8.49

Cf-S (current work) 87.04 ± 0.47 0.097

CfC-noGate (current work) 85.57 ± 0.34 0.093

CfC (current work) 84.87 ± 0.42 0.084

CfC-mmRNN (current work) 85.97 ± 0.25 0.128

Numbers represent mean ± s.d. (n = 5). The performance of the models marked by † is reported 
from ref. 7. Bold values indicate the highest accuracy and best time per epoch (min).
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high-dimensional pixel observations to steering curvature commands. 
The details of this experiment are given in Methods.

We observe that CfCs similar to NCPs demonstrate a consistent 
attention pattern in each subtask while maintaining their attention 
profile under heavy noise as depicted in Extended Data Fig. 10c. This is 
while the attention profile of other networks such as CNNs and LSTMs 
is hindered by added input noise (Extended Data Fig. 10c).

This experiment empirically validates that CfCs possess similar 
robustness properties to their ODE counterparts, that is, LTC-based 
networks. Moreover, similar to NCPs, CfCs are parameter efficient. 
They performed the end-to-end autonomous lane-keeping task with 
around 4,000 trainable parameters in their RNN component (Extended 
Data Fig. 9).

Scope, discussion and conclusions
We introduce a closed-form continuous-time neural model built 
from an approximate closed-form solution of LTC networks that pos-
sess the strong modelling capabilities of ODE-based networks while 
being notably faster, more accurate, and stable. These closed-form 
continuous-time models achieve this by explicit time-dependent gating 
mechanisms and having a LTC modulated by neural networks. A discus-
sion of related research on continuous-time models is given in Methods.

For large-scale time-series prediction tasks, and where closed-loop 
performance matters24, CfCs can bring great value. This is because they 
capture the flexible, causal and continuous-time nature of ODE-based 
networks, such as LTC networks, while being more efficient. A discus-
sion on how to use different variants of CfCs is provided in Methods. On 
the other hand, implicit ODE- and partial differential equation-based 
models17,29–31 can be beneficial in solving continuously defined phys-
ics problems and control tasks. Moreover, for generative modelling, 
continuous normalizing flows built by ODEs are the suitable choice of 
model as they ensure invertibility, unlike CfCs2. This is because DEs 

guarantee invertibility (that is, under uniqueness conditions6, one 
can run them backwards in time). CfCs only approximate ODEs and 
therefore no longer necessarily form a bijection32.

What are the limitations of CfCs?
CfCs might express vanishing gradient problems. To avoid this, for tasks 
that require long-term dependences, it is better to use them together 
with mixed memory networks9 (as in the CfC variant CfC-mmRNN) or 
with proper parametrization of their transition matrices33,34. Moreover, 
we speculate that inferring causality from ODE-based networks might 
be more straightforward than a closed-form solution24. It would also be 
beneficial to assess whether verifying a continuous neural flow35 is more 
tractable by using an ODE representation of the system or its closed form.

For problems such as language modelling where a large amount of 
sequential data and substantial computational resources are available, 
transformers36 and their variants are great choices of models. CfCs 
could bring value when: (1) data have limitations and irregularities (for 
example, medical data, financial time series, robotics37 and closed-loop 
control, and multi-agent autonomous systems in supervised and rein-
forcement learning schemes38), (2) the training and inference efficiency 
of a model is important (for example, embedded applications39–41) and 
(3) when interpretability matters42.

Ethics statement
All authors acknowledge the Global Research Code on the development, 
implementation and communication of this research. For the purpose 
of transparency, we have included this statement on inclusion and 
ethics. This work cites a comprehensive list of research from around 
the world on related topics.

Methods
Proof of theorem 1
Proof. In the single-dimensional case, the IVP in equation (1) becomes 
linear in x as follows:

Table 3 | Per time-step regression

Model Mean Squared Error 
(MSE)

Time per epoch 
(min)

†ODE-RNN7 1.904 ± 0.061 0.79

†CT-RNN48 1.198 ± 0.004 0.91

†AugmentedLSTM44 1.065 ± 0.006 0.10

†CT-GRU49 1.172 ± 0.011 0.18

†RNN-Decay7 1.406 ± 0.005 0.16

†Bi-directional RNN53 1.071 ± 0.009 0.39

†GRU-D51 1.090 ± 0.034 0.11

†PhasedLSTM52 1.063 ± 0.010 0.25

†GRU-ODE7 1.051 ± 0.018 0.56

†CT-LSTM50 1.014 ± 0.014 0.31

†ODE-LSTM9 0.883 ± 0.014 0.29

coRNN57 3.241 ± 0.215 0.18

Lipschitz RNN58 1.781 ± 0.013 0.17

LTC1 0.662 ± 0.013 0.78

Transformer36 0.761 ± 0.032 0.80

Cf-S (current work) 0.948 ± 0.009 0.12

CfC-noGate (current work) 0.650 ± 0.008 0.21

CfC (current work) 0.643 ± 0.006 0.08

CfC-mmRNN (current work) 0.617 ± 0.006 0.34

Modelling the physical dynamics of a walker agent in simulation. Numbers present mean ± s.d. 
(n = 5). The performance of the models marked by † is reported from ref. 9. Bold values indicate 
the lowest error and best time per epoch (min).

Table 4 | Event-based sequence classification on irregularly 
sequential MNIST

Model Accuracy (%) Time per epoch 
(min)

ODE-RNN7 72.41 ± 1.69 14.57

CT-RNN48 72.05 ± 0.71 17.30

Augmented LSTM44 82.10 ± 4.36 2.48

CT-GRU49 87.51 ± 1.57 3.81

RNN-Decay7 88.93 ± 4.06 3.64

Bi-directional RNN7 94.43 ± 0.23 8.097

GRU-D51 95.44 ± 0.34 3.42

PhasedLSTM52 86.79 ± 1.57 5.69

GRU-ODE7 80.95 ± 1.52 6.76

CT-LSTM50 94.84 ± 0.17 3.84

coRNN57 94.44 ± 0.24 3.90

Lipschitz RNN58 95.92 ± 0.16 3.86

ODE-LSTM9 95.73 ± 0.24 6.35

Cf-S (current work) 95.23 ± 0.16 2.73

CfC-noGate (current work) 96.99 ± 0.30 3.36

CfC (current work) 95.42 ± 0.21 3.62

CfC-mmRNN (current work) 98.09 ± 0.18 5.50

Test accuracy shown as mean ± s.d. (n = 5). Bold values indicate the highest accuracy and best 
time per epoch (min).
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d
dt
x(t) = − [wτ + f(I(t))] ⋅ x(t) + Af(I(t)). (5)

Therefore, we can use the theory of linear ODEs to obtain an inte-
gral closed-form solution (section 1.10 in ref. 21) consisting of two nested 
integrals. The inner integral can be eliminated by means of integration 
by substitution43. The remaining integral expression can then be solved 
in the case of piecewise constant inputs and approximated in the case 
of general inputs. The three steps of the proof are outlined below.

Integral closed-form solution of LTC
We consider the ODE semantics of a single neuron that receives some 
arbitrary continuous input signal I and has a positive, bounded, con-
tinuous and monotonically increasing nonlinearity f:

d
dt
x(t) = − [wτ + f(I(t))] ⋅ x(t) + A ⋅ [wτ + f(I(t))] .

Assumption. We assumed a second constant value wτ in the above 
representation of a single LTC neuron. This is done to introduce sym-
metry in the structure of the ODE, yielding a simpler expression for 
the solution. The inclusion of this second constant may appear to 
profoundly alter the dynamics. However, as shown below, numerical 
experiments suggest that this simplifying assumption has a marginal 
effect on the ability to approximate LTC cell dynamics.

Using the variation of constants formula (section 1.10 in ref. 21), we 
obtain after some simplifications:

x(t) = (x(0) − A)e−wτt−∫
t
0 f(I(s))ds + A. (6)

Analytical LTC solution for piecewise constant inputs
The derivation of a useful closed-form expression of x requires us to solve 
the integral expression ∫t0 f(I(s))ds for any t ≥ 0. Fortunately, the integral 
∫t0 f(I(s))ds enjoys a simple closed-form expression for piecewise constant 
inputs I. Specifically, assume that we are given a sequence of time points

0 = τ0 < τ1 < τ2 < … < τn−1 < τn = ∞,

such that τ1,… , τn−1 ∈ ℝ and I(t) = γi for all t ∈ [τi; τi+1) with 0 ≤ i ≤n − 1. 
Then, it holds that

∫
t

0
f(I(s))ds = f(γk)(t − τk) +

k−1
∑
i=0
f(γi)(τi+1 − τi), (7)

when τk ≤ t < τk+1 for some 0 ≤ k ≤ n − 1 (as usual, one defines ∑−1
i=0 ∶= 0). 

With this, we have

x(t) = (x(0) − A)e−wτte
−f(γk)(t−τk)−

k−1
∑
i=0

f(γi)(τi+1−τi)
+ A, (8)

when τk ≤ t < τk+1 for some 0 ≤ k ≤ n − 1. While any continuous input can 
be approximated arbitrarily well by a piecewise constant input43, a tight 
approximation may require a large number of discretization points 
τ1, …, τn. We address this next.

Analytical LTC approximation for general inputs
Inspired by equations (7) and (8), the next result provides an analytical 
approximation of x(t).

Lemma 1
For any Lipschitz continuous, positive, monotonically increasing and 
bounded f and continuous input signal I(t), we approximate x(t) in equa-
tion (6) as

x̃(t) = (x(0) − A)e−[wτt+f(I(t))t]f(−I(t)) + A. (9)

Then, |x(t) − x̃(t)| ≤ |x(0) − A|e−wτt for all t ≥ 0. Writing c = x(0) − A for con-
venience, we can obtain the following sharpness results, additionally:

	1.	 For any t ≥ 0, we have sup { 1
c
(x(t) − x̃(t))|I ∶ [0; t] → ℝ} = e−wτt.

	2.	 For any t ≥ 0, we have inf { 1
c
(x(t) − x̃(t))|I ∶ [0; t] → ℝ} = e−wτt(e−t − 1).

Above, the supremum and infimum are meant to be taken across all 
continuous input signals. These statements settle the question about the 
worst-case errors of the approximation. The first statement implies, in 
particular, that our bound is sharp.

The full proof is given in the next section. Lemma 1 demonstrates 
that the integral solution we obtained and shown in equation (6) is 
tightly close to the approximate closed-form solution we proposed in 
equation (9). Note that, as wτ is positively defined, the derived bound 
between equations (6) and (9) ensures an exponentially decaying error 
as time goes by. Therefore, we have the statement of the theorem. □

Proof of lemma 1
We start by noting that

x(t) − x̃(t) = c e−wτt [e−∫t0 f(I(s))ds − e−f(I(t))tf(−I(t))] .

Since 0 ≤ f ≤ 1, we conclude that e−∫t0 f(I(s))ds ∈ [0; 1]  and e−f(I(t))tf(−I
(t)) ∈ [0; 1]. This shows that |x(t) − x̃(t)| ≤ |c|e−wτt. To see the sharpness 
results, pick some arbitrary small ε > 0 and a sufficiently large C > 0 
such that f(−C) ≤ ε and 1 − ε ≤ f(C). With this, for any 0 < δ < t, we consider 
the piecewise constant input signal I such that I(s) = −C for s ∈ [0; t − δ] 
and I(s) = C for s ∈ (t − δ; t]. Then, it can be noted that

e−∫t0 f(I(s))ds − e−f(I(t))tf(−I(t)) ≥

e−εt−δ⋅1 − e−(1−ε)⋅tε→ 1, when ε,δ→ 0
.

Statement 1 follows by noting that there exists a family of continu-
ous signals In ∶ [0; t] → ℝ such that ∣In( ⋅ )∣ ≤ C for all n ≥ 1 and In → I point-
wise as n → ∞. This is because

lim
n→∞

| ∫t0 f(I(s))ds − ∫t0 f(In(s))ds | ≤

lim
n→∞

∫t0 | f(I(s)) − f(In(s))|ds ≤ lim
n→∞

L∫t0 |I(s) − In(s)|ds

= 0

,

where L is the Lipschitz constant of f, and the last identity is due to the 
dominated convergence theorem43. To see statement 2, we first note 
that the negation of the signal −I provides us with

e−∫t0 f(−I(s))ds − e−f(−I(t))tf(I(t)) ≤

e−(1−ε)(t−δ)−δ⋅0 − e−ε⋅t(1 − ε) → e−t − 1,

if ε, δ → 0. The fact that the left-hand side of the last inequality must be 
at least e−t − 1 follows by observing that e−t ≤ e−∫t0 f(I′(s))ds  and 
e−f(I″(t))tf( − I″(t)) ≤ 1 for any I′, I′′ ∶ [0; t] → ℝ. □

Compiling LTC architectures into their closed-form equivalent
In general, it is possible to compile the architecture of an LTC net-
work into its closed-form version. This compilation allows us to 
speed up the training and inference time of ODE-based networks 
as the closed-form variant does not require complex ODE solvers to 
compute outputs. Algorithm 1 provides the instructions on how to 
transfer the architecture of an LTC network into its closed-form vari-
ant. Here, WAdj corresponds to the adjacency matrix that maps exog-
enous inputs to hidden states and the coupling among hidden states.  
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This adjacency matrix can have an arbitrary sparsity (that is, there 
is no need to use a directed acyclic graph for the coupling between 
neurons).

Algorithm 1. Translate the architecture of an LTC network into its 
closed-form variant

 � Inputs: LTC inputs I(N×T)(t), the activity x(H×T)(t) and initial states 
x(H×1)(0) of LTC neurons and the adjacency matrix for synapses 
W[(N+H)∗(N+H)]
Adj

  LTC ODE solver with step of Δt
  time-instance vectors of inputs, t(1×T)I(t)
 � time-instance of LTC neurons tx(t)      ∇ time might be sampled 

irregularly
  LTC neuron parameter τ(H×1)

  LTC network synaptic parameters {σ(N×H), μ(N×H), A(N×H)}
 � Outputs: LTC closed-form approximation of hidden state neu-

rons, x̂(N×T)(t)
 � xpre(t) = WAdj × [I0…IN, x0…xH]      ∇ all presynaptic signals to 

nodes
  for ith neuron in neurons 1 to H do
    for j in Synapses to ith neuron do

    ̂xi+ = (x0 − Aij)e
[ −tx(t)⊙(1/τi+

1

1+e
(−σij(xpreij −μij))

))]
⊙ 1

1+e(σij(xpreij −μij))
+ Aij

    end for
  end for
  return x̂(t)

Experimental details of the tightness experiment
We took a trained NCP22, which consists of a perception module and an 
LTC-based network1 that possesses 19 neurons and 253 synapses. The 
network was trained to steer a self-driving vehicle autonomously. We 
used recorded real-world test runs of the vehicle for a lane-keeping 
task governed by this network. The records included the inputs, 
outputs and all the LTC neurons’ activities and parameters. To per-
form a numerical evaluation of our theory to determine whether our 
proposed closed-form solution for LTC neurons is good enough in 
practice as well, we inserted the parameters for individual neurons 
and synapses of the DEs into the closed-form solution (similar to the 
representations shown in Extended Data Fig. 1b,c) and emulated the 
structure of the ODE-based LTC networks. We then visualized the 
output neuron’s dynamics of the ODE (in blue) and of the closed-form 
solution (in red). As illustrated in Fig. 2, we observed that the behav-
iour of the ODE is captured by the closed-form solution with a mean 
squared error of 0.006. This experiment provides numerical evi-
dence for the tightness results presented in our theory. Hence, the 
closed-form solution contains the main properties of liquid networks 
in approximating dynamics.

Baseline models
The example baseline models considered include some variations of 
classical auto-regressive RNNs, such as an RNN with concatenated 
Δt (RNN-Δt), a recurrent model with moving average on missing val-
ues (RNN-impute), RNN-Decay7, LSTMs44 and gated recurrent units 
(GRUs)45. We also report results for a variety of encoder–decoder 
ODE-RNN-based models, such as RNN-VAE, latent variable models 
with RNNs, and with ODEs, all from ref. 7.

Furthermore, we include models such as interpolation prediction 
networks (IP-Net)46, set functions for time series (SeFT)47, CT-RNN48, 
CT-GRU49, CT-LSTM50, GRU-D51, PhasedLSTM52 and bi-directional 
RNNs53. Finally, we benchmarked CfCs against competitive recent 
RNN architectures with the premise of tackling long-term depend-
ences, such as Legandre memory units54, high-order polynomial projec-
tion operators (Hippo)55, orthogonal recurrent models (expRNNs)56, 
mixed memory RNNs such as ODE-LSTMs9, coupled oscillatory RNNs 
(coRNN)57 and Lipschitz RNN58.

Experimental details for the Walker2D dataset
This task is designed based on the Walker2d-v2 OpenAI gym59 environ-
ment using data from four different stochastic policies. The objective 
is to predict the physics state in the next time step. The training and 
testing sequences are provided at irregularly sampled intervals. We 
report the squared error on the test set as a metric.

Description of the event-based MNIST experiment
We first sequentialize each image by transforming each 28 × 28 image 
into a long series of length 784. The objective is to predict the class 
corresponding to each image from the long input sequence. Advanced 
sequence modelling frameworks such as coRNN57, Lipschitz RNN58 and 
mixed memory ODE-LSTM9 can solve this task very well with accuracy 
of up to 99.0%. However, we aim to make the task even more challeng-
ing by sparsifying the input vectors with event-like irregularly sampled 
mechanisms. To this end, in each vector input (that is, flattened image), 
we transform each consecutive occurrence of values into one event. 
For instance, within the long binary vector of an image, the sequence 
1, 1, 1, 1 is transformed to (1, t = 4) (ref. 9). This way, sequences of length 
784 are condensed into event-based irregularly sampled sequences of 
length 256 that are far more challenging to handle than equidistance 
input signals. A recurrent model now has to learn to memorize input 
information of length 256 while keeping track of the time lags between 
the events.

Description of the event-based XOR encoding experiment
The bit streams are provided in densely sampled and event-based 
sampled formats. The densely sampled version simply represents 
an incoming bit as an input event. The event-based sampled version 
transmits only bit changes to the network, that is, multiple equal bits 
are packed into a single input event. Consequently, the densely sam-
pled variant is a regular sequence classification problem, whereas 
the event-based encoding variant represents an irregularly sampled 
sequence classification problem.

Experimental details of the IMDB dataset experiment
Each sentence corresponds to either positive or negative sentiment. 
We tokenize the sentences in a word-by-word fashion with a vocabulary 
consisting of the 20,000 words occurring most frequently in the data-
set. We map each token to a vector using trainable word embedding. 
The word embedding is initialized randomly. No pretraining of the 
network or word embedding is performed.

Setting of the driving experiment
It has been shown that models based on LTC networks are more robust 
when trained on offline demonstrations and tested online in closed 
loop with their environments, in many end-to-end robot control tasks 
such as mobile robots60, autonomous ground vehicles22 and autono-
mous aerial vehicles24,61. This robustness in decision-making (that is, 
their flexibility in learning and executing the task from demonstrations 
despite environmental or observational disturbances and distribu-
tional shifts) originates from their model semantics that formally 
reduces to dynamic causal models20,24. Intuitively, LTC-based networks 
learn to extract a good representation of the task they are given (for 
example, their attention maps indicate what representation they have 
learned to focus on the road with more attention to the road’s horizon) 
and maintain this understanding under heavy distribution shifts. An 
example is illustrated in Extended Data Fig. 10.

In this experiment, we aim to investigate whether CfC models and 
their variants, such as CfC-mmRNN, possess this robustness charac-
teristic (maintaining their attention map under distribution shifts and 
added noise), similar to their ODE counterparts (LTC-based networks 
called NCPs22).

We start by training neural network architectures that pos-
sess a convolutional head stacked with the choice of RNN. The RNN 
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compartment of the networks is replaced by LSTM networks, NCPs22, 
Cf-S, CfC-NoGate and CfC-mmRNN. We also trained a fully convolu-
tional neural network for the sake of proper comparison. Our train-
ing pipeline followed an imitation learning approach with paired 
pixel-control data from a 30 Hz BlackFly PGE-23S3C red–green–blue 
camera, collected by a human expert driver across a variety of rural driv-
ing environments, including different times of day, weather conditions 
and seasons of the year. The original 3 h data set was further augmented 
to include off-orientation recovery data using a privileged controller62 
and a data-driven view synthesizer63. The privileged controller enabled 
the training of all networks using guided policy learning64. After train-
ing, all networks were transferred on-board our full-scale autonomous 
vehicle (Lexus RX450H, retrofitted with drive-by-wire capability). The 
vehicle was consistently started at the centre of the lane, initialized with 
each trained model and run to completion at the end of the road. If the 
model exited the bounds of the lane, a human safety driver intervened 
and restarted the model from the centre of the road at the intervention 
location. All models were tested with and without noise added to the 
sensory inputs to evaluate robustness.

The testing environment consisted of 1 km of private test road with 
unlabelled lane markers, and we observed that all trained networks 
were able to successfully complete the lane-keeping task at a constant 
velocity of 30 km h−1. Extended Data Fig. 10 provides an insight into how 
these networks reach driving decisions. To this end, we computed the 
attention of each network while driving by using the VisualBackProp 
algorithm65.

Related works on continuous-time models
Continuous-time models. Machine learning, control theory 
and dynamical systems merge at models with continuous-time 
dynamics60,66–69. In a seminal work, Chen et al.2,7 revived the class 
of continuous-time neural networks48,70, with neural ODEs. These 
continuous-depth models give rise to vector field representations 
and a set of functions that were not possible to generate before with 
discrete neural networks. These capabilities enabled flexible density 
estimation3–5,71,72 as well as performant modelling of sequential and 
irregularly sampled data1,7–9,58. In this paper, we showed how to relax 
the need for an ODE solver to realize an expressive continuous-time 
neural network model for challenging time-series problems.

Improving neural ODEs. ODE-based neural networks are as good 
as their ODE solvers. As the complexity or the dimensionality of 
the modelling task increases, ODE-based networks demand a more 
advanced solver that largely impacts their efficiency17, stability13,15,73–75 
and performance1. A large body of research has studied how to 
improve the computational overhead of these solvers, for example, 
by designing hypersolvers17, deploying augmentation methods4,12, 
pruning6 or regularizing the continuous flows14–16. To enhance the 
performance of an ODE-based model, especially in time-series mod-
elling tasks76, solutions for stabilizing their gradient propagation 
have been provided9,58,77. In this work, we showed that CfCs improve 
the scalability, efficiency and performance of continuous-depth 
neural models.

Which CfC variants to choose in different applications
Our extensive experimental results demonstrate that different CfC vari-
ants, namely Cf-S, CfC-noGate, vanilla CfC and CfC-mmRNN, achieve 
comparable results to each other while one comes on top depending 
on the nature of the data set. We suggest using CfC in most cases where 
the sequence length is up to a couple of hundred steps. To capture 
longer-range dependences, we recommend CfC-mmRNN. The Cf-S 
variant is effective when we aim to obtain the fastest inference time. 
CfC-noGate could be tested as a hyperparameter when using the vanilla 
CfC as the primary choice of model.

Description of hyperparameters
The hyperparameters used in our experimental results are as follows:

•	 clipnorm: the gradient clipping norm (that is, the global norm 
clipping threshold)

•	 optimizer: the weight update preconditioner (for example, 
Adam, Stochastic Gradient Descent with momentum, etc.)

•	 batch_size: the number of samples used to compute the 
gradients

•	 hidden size: the number of RNN units
•	 epochs: the number of passes over the training dataset
•	 base_lr: the initial learning rate
•	 decay_lr: the factor by which the learning rate is multiplied after 

each epoch
•	 backbone_activation: the activation function of the backbone 

layers
•	 backbone_dr: the dropout rate of the backbone layers
•	 forget_bias: the forget gate bias (for mmRNN and LSTM)
•	 backbone_units: the number of hidden units per backbone layer
•	 backbone_layers: the number of backbone layers
•	 weight_decay: the L2 weight regularization factor
•	 τdata: the constant factor by which the elapsed time input is multi-

plied (default value 1)
•	 init: the gain of the Xavier uniform distribution for the weight 

initialization (default value 1)

Data availability
All data and materials used in the analysis are openly available at https:// 
github.com/raminmh/CfC under an Apache 2.0 license for the purposes 
of reproducing and extending the analysis.

Code availability
All code and materials used in the analysis are openly available at 
https://github.com/raminmh/CfC under an Apache 2.0 license for 
the purposes of reproducing and extending the analysis (https://doi. 
org/10.5281/zenodo.7135472).
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Extended Data Fig. 1 | Instantiation of LTCs in ODE and closed-form representations. a) A sample LTC network with two nodes and five synapses. b) the ODE 
representation of this two-neuron system. c) the approximate closed-form representation of the network.
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Extended Data Fig. 2 | Closed-form Continuous-depth neural architecture. A backbone neural network layer delivers the input signals into three head networks g, f 
and h. f acts as a liquid time-constant for the sigmoidal time-gates of the network. g and h construct the nonlinearities of the overall CfC network.
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Extended Data Fig. 3 | Hyperparameters for Human activity and Walker. List of hyperparameters used to obtain results in Human activity and Walker2D 
Experiments.
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Extended Data Fig. 4 | Hyperparameters for ET-sMNIST and Bit-stream XOR. List of hyperparameters used to obtain results in Event-based MNIST and Bit-stream 
XOR Experiments.
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Extended Data Fig. 5 | Bit-stream XOR sequence classification. The performance values (accuracy %) for all baseline models are reproduced from9. Numbers present 
mean ± standard deviations, (n=5). Note: The performance of models marked by † are reported from9. Bold declares highest accuracy and best time per epoch (min).
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Extended Data Fig. 6 | PhysioNet.  AUC stands for area under curve. Numbers present mean ± standard deviations, (n=5). Note: The performance of the models 
marked by † are reported from 7 and the ones with * from78. Bold declares highest AUC score and best time per epoch (min).
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Extended Data Fig. 7 | Hyperparameters for Physionet and IMDB. List of hyperparameters used to obtain results in Physionet and IMDB sentiment classification 
experiments.
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Extended Data Fig. 8 | Results on the IMDB datasets. The experiment is 
performed without any pretraining or pretrained word-embeddings. Thus, we 
excluded advanced attention-based models78,79 such as Transformers36 and RNN 
structures that use pretraining. Numbers present mean ± standard deviations, 

(n=5). Note: The performance of the models marked by † are reported from55, and 
* are reported from57. The n/a standard deviation denotes that the original report 
of these experiments did not provide the statistics of their analysis. Bold declares 
highest accuracy and best time per epoch (min).
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Extended Data Fig. 9 | Lane-keeping models’ parameter count. CfC and NCP networks perform lane-keeping in unseen scenarios with a compact representation.
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Extended Data Fig. 10 | Attention Profile of networks. Trained networks 
receive unseen inputs (first column in each tab) and generate acceleration and 
steering commands. We use the Visual-Backprop algorithm65 to compute the 
saliency maps of the convolutional part of each network. a) results for networks 

tested on data collected in summer. b) results for networks tested on data 
collected in winter. c) results for inputs corrupted by a zero-mean Gaussian noise 
with variance, σ2 = 0.35.

http://www.nature.com/natmachintell

	Closed-form continuous-time neural networks

	Deriving an approximate closed-form solution for neural interactions

	Explicit time dependence

	Sequence and time-step prediction efficiency

	CfCs: flexible deep models for sequential tasks

	Deriving a closed-form solution

	Theorem 1

	Tightness of the closed-form solution in practice

	Designing CfC models from the solution

	Resolving the gradient issues

	Replacing biases by learnable instances

	Gating balance

	Backbone

	The procedure to account for the explicit time dependence

	Experiments with CfCs

	CfC network variants

	Baselines

	Human activity recognition

	Physical dynamics modelling

	Event-based sequential image processing

	Regularly and irregularly sampled bit-stream XOR

	PhysioNet Challenge

	Sentiment analysis using IMDB

	Performance of CfCs in autonomous driving

	Scope, discussion and conclusions

	What are the limitations of CfCs?

	Ethics statement


	Methods

	Proof of theorem 1

	Integral closed-form solution of LTC

	Analytical LTC solution for piecewise constant inputs

	Analytical LTC approximation for general inputs

	Lemma 1

	Proof of lemma 1

	Compiling LTC architectures into their closed-form equivalent

	Experimental details of the tightness experiment

	Baseline models

	Experimental details for the Walker2D dataset

	Description of the event-based MNIST experiment

	Description of the event-based XOR encoding experiment

	Experimental details of the IMDB dataset experiment

	Setting of the driving experiment

	Related works on continuous-time models

	Continuous-time models
	Improving neural ODEs

	Which CfC variants to choose in different applications

	Description of hyperparameters


	Acknowledgements

	Fig. 1 Neural and synapse dynamics.
	Fig. 2 Tightness of the closed-form solution in practice.
	Extended Data Fig. 1 Instantiation of LTCs in ODE and closed-form representations.
	Extended Data Fig. 2 Closed-form Continuous-depth neural architecture.
	Extended Data Fig. 3 Hyperparameters for Human activity and Walker.
	Extended Data Fig. 4 Hyperparameters for ET-sMNIST and Bit-stream XOR.
	Extended Data Fig. 5 Bit-stream XOR sequence classification.
	Extended Data Fig. 6 PhysioNet.
	Extended Data Fig. 7 Hyperparameters for Physionet and IMDB.
	Extended Data Fig. 8 Results on the IMDB datasets.
	Extended Data Fig. 9 Lane-keeping models’ parameter count.
	Extended Data Fig. 10 Attention Profile of networks.
	Table 1 Computational complexity of models.
	Table 2 Human activity recognition, per time-step classification.
	Table 3 Per time-step regression.
	Table 4 Event-based sequence classification on irregularly sequential MNIST.




