
Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 992

nature machine intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Closed-form continuous-time neural
networks

Ramin Hasani   1,5 , Mathias Lechner1,2,5, Alexander Amini1,
Lucas Liebenwein   1, Aaron Ray1, Max Tschaikowski3, Gerald Teschl   4 &
Daniela Rus1

Continuous-time neural networks are a class of machine learning systems
that can tackle representation learning on spatiotemporal decision-making
tasks. These models are typically represented by continuous differential
equations. However, their expressive power when they are deployed on
computers is bottlenecked by numerical differential equation solvers.
This limitation has notably slowed down the scaling and understanding of
numerous natural physical phenomena such as the dynamics of nervous
systems. Ideally, we would circumvent this bottleneck by solving the given
dynamical system in closed form. This is known to be intractable in general.
Here, we show that it is possible to closely approximate the interaction
between neurons and synapses—the building blocks of natural and artificial
neural networks—constructed by liquid time-constant networks efficiently
in closed form. To this end, we compute a tightly bounded approximation
of the solution of an integral appearing in liquid time-constant dynamics
that has had no known closed-form solution so far. This closed-form
solution impacts the design of continuous-time and continuous-depth
neural models. For instance, since time appears explicitly in closed
form, the formulation relaxes the need for complex numerical solvers.
Consequently, we obtain models that are between one and five orders of
magnitude faster in training and inference compared with differential
equation-based counterparts. More importantly, in contrast to ordinary
differential equation-based continuous networks, closed-form networks
can scale remarkably well compared with other deep learning instances.
Lastly, as these models are derived from liquid networks, they show good
performance in time-series modelling compared with advanced recurrent
neural network models.

Continuous neural network architectures built by ordinary differential
equations (ODEs)2 are expressive models useful in modelling data with
complex dynamics. These models transform the depth dimension of
static neural networks and the time dimension of recurrent neural
networks (RNNs) into a continuous vector field, enabling parameter

sharing, adaptive computations and function approximation for
non-uniformly sampled data.

These continuous-depth (time) models have shown promise in
density estimation applications3–6, as well as modelling sequential and
irregularly sampled data1,7–9.

Received: 23 March 2022

Accepted: 5 October 2022

Published online: 15 November 2022

 Check for updates

1Massachusetts Institute of Technology, Cambridge, MA, USA. 2Institute of Science and Technology Austria, Klosterneuburg, Austria. 3Aalborg University,
Aalborg, Denmark. 4University of Vienna, Vienna, Austria. 5These authors contributed equally: Ramin Hasani, Mathias Lechner.  e-mail: rhasani@mit.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-022-00556-7
http://orcid.org/0000-0002-9889-5222
http://orcid.org/0000-0002-3229-6665
http://orcid.org/0000-0002-1036-9173
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-022-00556-7&domain=pdf
mailto:rhasani@mit.edu

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 993

Article https://doi.org/10.1038/s42256-022-00556-7

nonlinear transmission of neurotransmitters, the probability of activa-
tion of receptors and the concentration of available neurotransmitters,
among other nonlinearities (see S(t) in Fig. 1) and (3) the propagation
of information between neurons is induced by feedback and memory
apparatuses (see how I(t) stimulates x(t) through a nonlinear synapse
S(t) which also has a multiplicative difference of potential to the post-
synaptic neuron accounting for a negative feedback mechanism).
One could read I(t) as a mixture of exogenous input to the (neural)
network and presynaptic inputs from other neurons that result in a
depolarization x(t). This depolarization is mediated by the current
S(t) that depends upon depolarization and a reversal threshold A. LTC
networks1, which are expressive continuous-depth models obtained by
a bilinear approximation20 of a neural ODE formulation2, are designed
on the basis of these mechanisms. Correspondingly, we take their ODE
semantics and approximate a closed-form solution for the scalar case of
a postsynaptic neuron receiving an input stimulus from a presynaptic
source through a nonlinear synapse.

To this end, we apply the theory of linear ODEs21 to analytically solve
the dynamics of an LTC DE as shown in Fig. 1. We then simplify the solu-
tion to the point where there is one integral left to solve. This integral
compartment, ∫t0 f(I(s))ds in which f is a positive, continuous, monotoni-
cally increasing and bounded nonlinearity, is challenging to solve in
closed form since it has dependencies on an input signal I(s) that is
arbitrarily defined (such as real-world sensory readouts). To approach
this problem, we discretize I(s) into piecewise constant segments and
obtain the discrete approximation of the integral in terms of the sum
of piecewise constant compartments over intervals. This piecewise
constant approximation inspired us to introduce an approximate
closed-form solution for the integral ∫t0 f(I(s))ds that is provably tight
when the integral appears as the exponent of an exponential decay,
which is the case for LTCs. We theoretically justify how this closed-form
solution represents LTCs’ ODE semantics and is as expressive (Fig. 1).

Explicit time dependence
We then dissect the properties of the obtained closed-form solution and
design a new class of neural network models we call closed-form
continuous-depth networks (CfC). CfCs have an explicit time dependence
in their formulation that does not require a numerical ODE solver to obtain
their temporal rollouts. Thus, they maximize the trade-off between accu-
racy and efficiency of solvers. Formally, this property corresponds to
obtaining lower time complexity for models without numerical insta-
bilities and errors as illustrated in Table 1 (left). For example, Table 1 (left)
shows that the complexity of a pth-order numerical ODE solver is 𝒪𝒪(Kp),
where K is the number of ODE steps, while a CfC system (which has explicit
time dependence) requires 𝒪𝒪(K̃), where K is the exogenous input time
steps, which are typically one to three orders of magnitude smaller than
K. Moreover, the approximation error of a pth-order numerical ODE solver
scales with 𝒪𝒪(ϵp+1), whereas CfCs are closed-form continuous-time sys-
tems, thus the notion of approximation error becomes irrelevant to them.

While ODE-based neural networks with careful memory and gradi-
ent propagation design9 perform competitively with advanced discre-
tized recurrent models on relatively small benchmarks, their training
and inference are slow owing to the use of advanced numerical differ-
ential equation (DE) solvers10. This becomes even more troublesome
as the complexity of the data, task and state space increases (that is,
requiring more precision)11, for instance, in open-world problems such
as medical data processing, self-driving cars, financial time-series and
physics simulations.

The research community has developed solutions for resolving
this computational overhead and for facilitating the training of neural
ODEs, for instance by relaxing the stiffness of a flow by state augmenta-
tion techniques4,12, reformulating the forward pass as a root-finding
problem13, using regularization schemes14–16 or improving the inference
time of the network17.

Here, we derive a closed-form continuous-depth model that has
the modelling capabilities of ODE-based models but does not require
any solver to model data (Fig. 1).

Intuitively, in this work, we replace the integration (that is, solu-
tion) of a nonlinear DE describing the interaction of a neuron with its
input nonlinear synaptic connections, with their corresponding non-
linear operators. This could be achieved in principle using functional
Taylor expansions (in the spirit of the Volterra series)18. However, in
the particular case of liquid time-constant (LTC) networks, we can
leverage a closed-form expression for the system’s response to input.
This allows one to evaluate the system’s response to exogenous input
(I) and recurrent inputs from hidden states (x) as a function of time.
One way of looking at this is to regard the closed-form solution as the
application of a nonlinear forward operator to the inputs of each hid-
den state or neuron in the network, where the outputs of one neuron
constitute the inputs for others. Effectively, this rests on approximating
a conductance-based model with a neural mass model, of the kind used
in the dynamic causal modelling of real neuronal networks19.

The proposed continuous neural networks yield considerably
faster training and inference speeds while being as expressive as their
ODE-based counterparts. We provide a derivation for the approximate
closed-form solution to a class of continuous neural networks that explic-
itly models time. We demonstrate how this transformation can be formu-
lated into a novel neural model and scaled to create flexible, performant
and fast neural architectures on challenging sequential datasets.

Deriving an approximate closed-form solution for neural
interactions
Two neurons interact with each other through synapses as shown in
Fig. 1. There are three principal mechanisms for information propaga-
tion in natural brains that are abstracted away in the current building
blocks of deep learning systems: (1) neural dynamics are typically con-
tinuous processes described by DEs (see the dynamics of x(t) in Fig. 1),
(2) synaptic release is much more than scalar weights, involving a

Synapses

Postsynaptic neuron

Presynaptic stimuli

I(t) + S(t)

S(t) = f(I(t)) (A – x(t))

f (–I(t)) + A[1+f(I(t))]t

x(t)

dt
= –

This is a LTC DE instance

We solve this in
closed form

A
f(·)

τ

τ
τ

Postsynaptic neuron’s potential
Synaptic reversal potential
Synaptic release nonlinearity
Postsynaptic neuron’s time constant

dx(t) x(t)
x(t) =

(x(0) – A) e–

x(t)

Fig. 1 | Neural and synapse dynamics. A postsynaptic neuron receives the
stimuli I(t) through a nonlinear conductance-based synapse model. Here, S(t)
stands for the synaptic current. The dynamics of the membrane potential of this
postsynaptic neuron are given by the DE presented in the middle. This equation

is a fundamental building block of LTC networks1, for which there is no known
closed-form expression. Here, we provide an approximate solution for this
equation which shows the interaction of nonlinear synapses with postsynaptic
neurons in closed form.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 994

Article https://doi.org/10.1038/s42256-022-00556-7

This explicit time dependence allows CfCs to perform computa-
tions at least one order of magnitude faster in terms of training and
inference time compared with their ODE-based counterparts, without
loss of accuracy.

Sequence and time-step prediction efficiency
In sequence modelling tasks, one can perform predictions based on an
entire sequence of observations, or perform auto-regressive modelling
where the model predicts the next time-step output given the current
time-step input. Table 1 (right) depicts the time complexity of different
neural network instances at inference, for a given sequence of length
n and a neural network of k number of hidden units. We observe that
the complexity of ODE-based networks and Transformer modules is at
least an order of magnitude higher than that of discrete RNNs and CfCs
in both sequence prediction and auto-regressive modelling (time-step
prediction) frameworks.

This is desirable because not only do CfCs establish a continuous
flow similar to ODE models1 to achieve better expressivity in representa-
tion learning but they do so with the efficiency of discrete RNN models.

CfCs: flexible deep models for sequential tasks
Additionally, CfCs are equipped with novel time-dependent gat-
ing mechanisms that explicitly control their memory. CfCs are as
expressive as their ODE-based peers and can be supplied with mixed
memory architectures9 to avoid gradient issues in sequential data
processing applications with long-range dependences. Beyond
accuracy and performance metrics, our results indicate that, when
considering accuracy per compute time, CfCs exhibit over 150 fold
improvements over ODE-based compartments. We perform a diverse
set of advanced time-series modelling experiments and present
the performance and speed gain achievable by using CfCs in tasks
with long-term dependences, irregular data and modelling physical
dynamics, among others.

Deriving a closed-form solution
In this section, we derive an approximate closed-form solution for
LTC networks, an expressive subclass of time-continuous models. We
discuss how the scalar closed-form expression derived from a small LTC
system can inspire the design of CfC models. In this regard, we define
the LTC semantics. We then state the main theorem that computes a
closed-form approximation of a given LTC system for the scalar case. To
prove the theorem, we first find the integral solution of the given LTC
ODE system. We then compute a closed-form analytical solution for the
integral solution for the case of piecewise constant inputs. Afterward,
we generalize the closed-form solution of the piecewise constant inputs
to the case of arbitrary inputs with our novel approximation and finally
provide sharpness results (that is, measure the rate and accuracy of an
approximation error) for the derived solution.

The hidden state of an LTC network is determined by the solution
of the following initial value problem (IVP)1:

dx
dt

= − [wτ + f(x, I,θ)] ⊙ x(t) + A⊙ f(x, I,θ), (1)

where at a time step t, x(D×1)(t) defines the hidden state of a LTC layer
with D cells, and I(m×1)(t) is an exogenous input to the system with m
features. Here, w(D×1)

τ is a time-constant parameter vector, A(D×1) is a bias
vector, f is a neural network parametrized by θ and ⊙ is the Hadamard
product. The dependence of f(.) on x(t) denotes the posibility of having
recurrent connections.

The full proof of theorem 1 is given in Methods. The theorem for-
mally demonstrates that the approximated closed-form solution for the
given LTC system is given by equation (2) and that this approximation
is tightly bounded with bounds given in the proof.

In the following, we show an illustrative example of this tightness
result in practice. To do this, we first present an instantiation of LTC
networks and their approximate closed-form expressions. Extended
Data Fig. 1 shows a liquid network with two neurons and five synaptic
connections. The network receives an input signal I(t). Extended Data
Fig. 1 further derives the DE expression for the network along with its
closed-form approximate solution. In general, it is possible to com-
pile an LTC network into its closed-form expression as illustrated in
Extended Data Fig. 1. This compilation can be performed using Algo-
rithm 1 provided in Methods.

Theorem 1
Given an LTC system determined by the IVP in equation (1), constructed by
one cell, receiving a single-dimensional time-series exogenous input I(t)
with no self-connections, the following expression is an approximation
of its closed-form solution:

x(t) ≈ (x0 − A)e−[wτ+f(I(t),θ)]tf(−I(t),θ) + A. (2)

Tightness of the closed-form solution in practice
Figure 2 shows an LTC-based network trained for autonomous driving22.
The figure further illustrates how close the proposed solution fits the
actual dynamics exhibited from a single-neuron ODE given the same
parametrization. The details of this experiment are given in Methods.

We next show how to design a novel neural network instance
inspired by this closed-form solution that has well-behaved gradient
properties and approximation capabilities.

Designing CfC models from the solution
Leveraging the scalar closed-form solution expressed by equation (2),
we can now distil this model into a neural network model that can be
trained at scale. The solution provides a grounded theoretical basis

Table 1 | Computational complexity of models

Time complexity Sequence and time-step prediction complexity

Method Complexity Local error Model Sequence prediction Time-step prediction

pth-order solver 𝒪𝒪(Kp) 𝒪𝒪(ϵp+1) RNN 𝒪𝒪(nk) 𝒪𝒪(k)

Adaptive-step solver — 𝒪𝒪(ϵ̃p+1) ODE-RNN 𝒪𝒪(nkp) 𝒪𝒪(kp)

Euler hypersolver 𝒪𝒪(K) 𝒪𝒪(δϵ2) Transformer 𝒪𝒪(n2k) 𝒪𝒪(nk)

pth-order hypersolver 𝒪𝒪(Kp) 𝒪𝒪(δϵp+1) CfC 𝒪𝒪(nk) 𝒪𝒪(k)

CfC (current work) 𝒪𝒪(K̃) Not relevant

Left: The time complexity of the process to compute K solver steps. ϵ is step size. ϵ̃ is the maximum step size and δ ≪ 0. K̃ is the time steps for CfCs corresponding to the input time step, which
is typically one to three orders of magnitude smaller than K. The left portion is reproduced with permission from ref. 17. Right: Sequence and time-step prediction complexity. n is the sequence
length. k is the number of hidden units. p is the order of the ODE solver.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 995

Article https://doi.org/10.1038/s42256-022-00556-7

for solving scalar continuous-time dynamics, and it is important to
translate this theory into a practical neural network model which can
be integrated into larger representation learning systems equipped
with gradient descent optimizers. Doing so requires careful atten-
tion to potential gradient and expressivity issues that can arise during
optimization, which we will outline in this section.

Formally, the hidden states, x(t)(D×1) with D hidden units at each
time step t, can be obtained explicitly as

x(t) = B⊙ e−[wτ+f(x,I;θ)]t ⊙ f(−x, −I;θ) + A, (3)

where B(D) collapses (x0 − A) of equation (2) into a parameter vector. A(D)
and w(D)

τ are system’s parameter vectors, while I(t)(m×1) is an
m-dimensional input at each time step t, f is a neural network para-
metrized by θ = {W(m×D)

Ix ,W(D×D)
xx ,b(D)x } and ⊙ is the Hadamard

(element-wise) product. While the neural network presented in equa-
tion (3) can be proven to be a universal approximator as it is an approx-
imation of an ODE system1,2, in its current form, it has trainability issues
which we point out and resolve shortly.

Resolving the gradient issues
The exponential term in equation (3) drives the system’s first part
(exponentially fast) to 0 and the entire hidden state to A. This issue
becomes more apparent when there are recurrent connections and
causes vanishing gradient factors when trained by gradient descent23.
To reduce this effect, we replace the exponential decay term with a
reversed sigmoidal nonlinearity σ(.). This nonlinearity is approximately
1 at t = 0 and approaches 0 in the limit t → ∞. However, unlike exponential
decay, its transition happens much more smoothly, yielding a better
condition on the loss surface.

Replacing biases by learnable instances
Next, we consider the bias parameter B to be part of the trainable param-
eters of the neural network f( − x, − I; θ) and choose to use a new network
instance instead of f (presented in the exponential decay factor). We

also replace A with another neural network instance, h(. ) to enhance the
flexibility of the model. To obtain a more general network architecture,
we allow the nonlinearity f(−x, −I; θ) present in equation (3) to have both
shared (backbone) and independent (g(. )) network compartments.

Gating balance
The time-decaying sigmoidal term can play a gating role if we addition-
ally multiply h(. ) with (1 − σ(. )). This way, the time-decaying sigmoid
function stands for a gating mechanism that interpolates between the
two limits of t → −∞ and t → ∞ of the ODE trajectory.

Backbone
Instead of learning all three neural network instances f, g and h sepa-
rately, we have them share the first few layers in the form of a backbone
that branches out into these three functions. As a result, the backbone
allows our model to learn shared representations, thereby speeding up
and stabilizing the learning process. More importantly, this architec-
tural prior enables two simultaneous benefits: (1) Through the shared
backbone, a coupling between the time constant of the system and its
state nonlinearity is established that exploits causal representation
learning evident in a liquid neural network1,24. (2) through separate
head network layers, the system has the ability to explore temporal
and structural dependences independently of each other.

These modifications result in the CfC neural network model:

x(t) = σ(−f(x, I;θf)t)⏟⎵⎵⎵⏟⎵⎵⎵⏟
time-continuous gating

⊙g(x, I;θg) + [1 − σ(−[f(x, I;θf)]t)]⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
time-continuous gating

⊙h(x, I;θh).

(4)

The CfC architecture is illustrated in Extended Data Fig. 2. The neu-
ral network instances could be selected arbitrarily. The time complexity
of the algorithm is equivalent to that of discretized recurrent net-
works25, being at least one order of magnitude faster than ODE-based
networks.

The procedure to account for the explicit time dependence
CfCs are continuous-depth models that can set their temporal behav-
iour based on the task under test. For time-variant datasets (for exam-
ple, irregularly sampled time series, event-based data and sparse data),
the t for each incoming sample is set based on its time stamp or order.
For sequential applications where the time of the occurrence of a sam-
ple does not matter, t is sampled as many times as the batch length, with
equidistant intervals within two hyperparameters a and b.

Experiments with CfCs
We now assess the performance of CfCs in a series of sequential data
processing tasks compared with advanced, recurrent models. We
first approach solving conventional sequential data modelling tasks
(for example, bit-stream prediction, sentiment analysis on text data,
medical time-series prediction, human activity recognition, sequential
image processing and robot kinematics modelling), and compare CfC
variants with an extensive set of advanced RNN baselines. We then
evaluate how CfCs compare with LTC-based neural circuit policies
(NCPs)22 in real-world autonomous lane-keeping tasks.

CfC network variants
To evaluate the proposed modifications we applied to the closed-form
solution network described by equation (3), we test four variants of the
CfC architecture: (1) the closed-form solution network (Cf-S) obtained
by equation (3), (2) the CfC without the second gating mechanism
(CfC-noGate), a variant that does not have the 1 − σ instance shown in
Extended Data Fig. 2, (3) The CfC model (CfC) expressed by equation
(4) and (4) the CfC wrapped inside a mixed memory architecture (that
is, where the CfC defines the memory state of an RNN, for instance,
a long short-term memory (LSTM)), a variant we call CfC-mmRNN.

Perception module

dx
dt

LTC module

Input stream

Dynamics of each node

Time (s)

O
ut

pu
t n

eu
ro

n
dy

na
m

ic
s

ODE

CfC Closed-form
solution of LTC

LTC

Outputs

Inputs I(t)
Neuron’s state x(t)

Nonlinearity f(·)
Parameters wτ, A

x(t) = (x(0) – A) e–[wτ+f(x,I)]t f(–x,–I) + A

= –(wτ + f(x,I)) x(t) + A f(x,I)

Fig. 2 | Tightness of the closed-form solution in practice. We approximate a
closed-form solution for LTC networks1 while largely preserving the trajectories
of their equivalent ODE systems. We develop our solution into CfC models that
are at least 100 fold faster than neural ODEs at both training and inference on
complex time-series prediction tasks.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 996

Article https://doi.org/10.1038/s42256-022-00556-7

Each of these four proposed variants leverages our proposed solution
and thus is at least one order of magnitude faster than continuous-time
ODE models.

To investigate their representation learning power, in the following
we extensively evaluate CfCs on a series of sequence modelling tasks.
The objective is to test the effectiveness of the CfCs in learning spati-
otemporal dynamics, compared with a wide range of advanced models.

Baselines
We compare CfCs with a diverse set of advanced algorithms developed
for sequence modelling by both discretized and continuous mecha-
nisms. These baselines are given in full in Methods.

Human activity recognition
The human activity dataset7 contains 6,554 sequences of humans dem-
onstrating activities such as walking, lying, sitting, etc. The input space
is formed of 561-dimensional inertial sensor measurements per time
step, recorded from the user’s smartphone26, being categorized into
six group of activities (per time step) as output.

We set up our dataset split (training, validation and test) to care-
fully reflect the modifications made by Rubanova et al.7 on this task.
The results of this experiment are reported in Table 2. We observe
that not only do the CfC variants Cf-S, CfC-noGate and CfC-mmRNN
outperform other models with a high margin, but they do so with a
speed-up of more than 8,752% over the best-performing ODE-based
instance (Latent-ODE-ODE). The reason for such a large speed dif-
ference is the complexity of the dataset dynamics that causes the
ODE solvers of ODE-based models such as Latent-ODE-ODE to com-
pute many steps upon stiff dynamics. This issue does not exist for
closed-form models as they do not use any ODE solver to account
for dynamics. The hyperparameter details of this experiment are
provided in Extended Data Fig. 3.

Physical dynamics modelling
The Walker2D dataset consists of kinematic simulations of the MuJoCo
physics engine27 (see Methods for more details). As shown in Table 3,
CfCs outperform the other baselines by a large margin, supporting
their strong capability to model irregularly sampled physical dynamics
with missing phases. It is worth mentioning that, on this task, CfCs even
outperform transformers by a considerable, 18% margin. The hyperpa-
rameter details of this experiment are provided in Extended Data Fig. 3.

Event-based sequential image processing
We next assess the performance of CfCs on a challenging sequential
image processing task. This task is generated from the sequential modi-
fied National Institute of Standards and Technology (MNIST) dataset
following the steps described in Methods. Moreover, the hyperparam-
eter details of this experiment are provided in Extended Data Fig. 4.

Table 4 summarizes the results on this event-based sequence
classification task. We observe that models such as ODE-RNN, CT-RNN,
GRU-ODE and LSTMs struggle to learn a good representation of the
input data and therefore show poor performance. In contrast, RNNs
endowed with explicit memory, such as bi-directional RNNs, GRU-D,
Lipschitz RNN, coRNN, CT-LSTM and ODE-LSTM, perform well on
this task. All CfC variants perform well on this task and establish the
state-of-the-art on this task, with CfC-mmRNN achieving 98.09% and
CfC-noGate achieving 96.99% accuracy in classifying irregularly sam-
pled sequences. It is worth mentioning that they do so around 200–
400% faster than ODE-based models such as GRU-ODE and ODE-RNN.

Regularly and irregularly sampled bit-stream XOR
The bit-stream XOR dataset9 considers the classification of bit streams
by implementing an XOR function in time. That is, each item in the
sequence contributes equally to the correct output. The details are
given in Methods.

Extended Data Fig. 5 compares the performance of many RNN
baselines. Many architectures such as Augmented LSTM, CT-GRU,
GRU-D, ODE-LSTM, coRNN and Lipschitz RNN, and all variants of CfC,
can successfully solve the task with 100% accuracy when the bit-stream
samples are equidistant from each other. However, when the bit-stream
samples arrive at non-uniform distances, only architectures that are
immune to the vanishing gradient in irregularly sampled data can solve
the task. These include GRU-D, ODE-LSTM, CfC and CfC-mmRNNs.
ODE-based RNNs cannot solve the event-based encoding tasks regard-
less of their choice of solvers, as they have vanishing/exploding gradi-
ent issues9. The hyperparameter details of this experiment are provided
in Extended Data Fig. 4.

PhysioNet Challenge
The PhysioNet Challenge 2012 dataset considers the prediction of the
mortality of 8,000 patients admitted to the intensive care unit. The
features represent time series of medical measurements taken dur-
ing the first 48 h after admission. The data are irregularly sampled in
time and over features, that is, only a subset of the 37 possible features
is given at each time point. We perform the same test–train split and
preprocessing as in ref. 7, and report the area under the curve (AUC)
on the test set as a metric in Extended Data Fig. 6. We observe that
CfCs perform competitively to other baselines while performing 160
times faster in terms of training time compared with ODE-RNN and
220 times compared with continuous latent models. CfCs are also, on
average, three times faster than advanced discretized gated recurrent
models. The hyperparameter details of this experiment are provided
in Extended Data Fig. 7.

Sentiment analysis using IMDB
The Internet Movie Database (IMDB) sentiment analysis dataset28 con-
sists of 25,000 training and 25,000 test sentences (see Methods for
more details). Extended Data Fig. 8 shows how CfCs equipped with
mixed memory instances outperform advanced RNN benchmarks. The
hyperparameter details of this experiment are provided in Extended
Data Fig. 7.

Performance of CfCs in autonomous driving
In this experiment, our objective is to evaluate how robustly CfCs
learn to perform autonomous navigation in comparison with their
ODE-based counterparts, LTC networks. The task is to map incoming

Table 2 | Human activity recognition, per time-step
classification

Model Accuracy (%) Time per epoch
(min)

†RNN-Impute7 79.50 ± 0.8 0.38

†RNN-Δt7 79.50 ± 0.8 0.45

†RNN-Decay7 80.00 ± 1.0 0.39

†GRU-D51 80.60 ± 0.7 0.15

†RNN-VAE7 34.30 ± 4.0 2.63

†Latent-ODE-RNN7 83.50 ± 1.0 7.71

†ODE-RNN7 82.90 ± 1.6 3.15

†Latent-ODE-ODE7 84.60 ± 1.3 8.49

Cf-S (current work) 87.04 ± 0.47 0.097

CfC-noGate (current work) 85.57 ± 0.34 0.093

CfC (current work) 84.87 ± 0.42 0.084

CfC-mmRNN (current work) 85.97 ± 0.25 0.128

Numbers represent mean ± s.d. (n = 5). The performance of the models marked by † is reported
from ref. 7. Bold values indicate the highest accuracy and best time per epoch (min).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 997

Article https://doi.org/10.1038/s42256-022-00556-7

high-dimensional pixel observations to steering curvature commands.
The details of this experiment are given in Methods.

We observe that CfCs similar to NCPs demonstrate a consistent
attention pattern in each subtask while maintaining their attention
profile under heavy noise as depicted in Extended Data Fig. 10c. This is
while the attention profile of other networks such as CNNs and LSTMs
is hindered by added input noise (Extended Data Fig. 10c).

This experiment empirically validates that CfCs possess similar
robustness properties to their ODE counterparts, that is, LTC-based
networks. Moreover, similar to NCPs, CfCs are parameter efficient.
They performed the end-to-end autonomous lane-keeping task with
around 4,000 trainable parameters in their RNN component (Extended
Data Fig. 9).

Scope, discussion and conclusions
We introduce a closed-form continuous-time neural model built
from an approximate closed-form solution of LTC networks that pos-
sess the strong modelling capabilities of ODE-based networks while
being notably faster, more accurate, and stable. These closed-form
continuous-time models achieve this by explicit time-dependent gating
mechanisms and having a LTC modulated by neural networks. A discus-
sion of related research on continuous-time models is given in Methods.

For large-scale time-series prediction tasks, and where closed-loop
performance matters24, CfCs can bring great value. This is because they
capture the flexible, causal and continuous-time nature of ODE-based
networks, such as LTC networks, while being more efficient. A discus-
sion on how to use different variants of CfCs is provided in Methods. On
the other hand, implicit ODE- and partial differential equation-based
models17,29–31 can be beneficial in solving continuously defined phys-
ics problems and control tasks. Moreover, for generative modelling,
continuous normalizing flows built by ODEs are the suitable choice of
model as they ensure invertibility, unlike CfCs2. This is because DEs

guarantee invertibility (that is, under uniqueness conditions6, one
can run them backwards in time). CfCs only approximate ODEs and
therefore no longer necessarily form a bijection32.

What are the limitations of CfCs?
CfCs might express vanishing gradient problems. To avoid this, for tasks
that require long-term dependences, it is better to use them together
with mixed memory networks9 (as in the CfC variant CfC-mmRNN) or
with proper parametrization of their transition matrices33,34. Moreover,
we speculate that inferring causality from ODE-based networks might
be more straightforward than a closed-form solution24. It would also be
beneficial to assess whether verifying a continuous neural flow35 is more
tractable by using an ODE representation of the system or its closed form.

For problems such as language modelling where a large amount of
sequential data and substantial computational resources are available,
transformers36 and their variants are great choices of models. CfCs
could bring value when: (1) data have limitations and irregularities (for
example, medical data, financial time series, robotics37 and closed-loop
control, and multi-agent autonomous systems in supervised and rein-
forcement learning schemes38), (2) the training and inference efficiency
of a model is important (for example, embedded applications39–41) and
(3) when interpretability matters42.

Ethics statement
All authors acknowledge the Global Research Code on the development,
implementation and communication of this research. For the purpose
of transparency, we have included this statement on inclusion and
ethics. This work cites a comprehensive list of research from around
the world on related topics.

Methods
Proof of theorem 1
Proof. In the single-dimensional case, the IVP in equation (1) becomes
linear in x as follows:

Table 3 | Per time-step regression

Model Mean Squared Error
(MSE)

Time per epoch
(min)

†ODE-RNN7 1.904 ± 0.061 0.79

†CT-RNN48 1.198 ± 0.004 0.91

†AugmentedLSTM44 1.065 ± 0.006 0.10

†CT-GRU49 1.172 ± 0.011 0.18

†RNN-Decay7 1.406 ± 0.005 0.16

†Bi-directional RNN53 1.071 ± 0.009 0.39

†GRU-D51 1.090 ± 0.034 0.11

†PhasedLSTM52 1.063 ± 0.010 0.25

†GRU-ODE7 1.051 ± 0.018 0.56

†CT-LSTM50 1.014 ± 0.014 0.31

†ODE-LSTM9 0.883 ± 0.014 0.29

coRNN57 3.241 ± 0.215 0.18

Lipschitz RNN58 1.781 ± 0.013 0.17

LTC1 0.662 ± 0.013 0.78

Transformer36 0.761 ± 0.032 0.80

Cf-S (current work) 0.948 ± 0.009 0.12

CfC-noGate (current work) 0.650 ± 0.008 0.21

CfC (current work) 0.643 ± 0.006 0.08

CfC-mmRNN (current work) 0.617 ± 0.006 0.34

Modelling the physical dynamics of a walker agent in simulation. Numbers present mean ± s.d.
(n = 5). The performance of the models marked by † is reported from ref. 9. Bold values indicate
the lowest error and best time per epoch (min).

Table 4 | Event-based sequence classification on irregularly
sequential MNIST

Model Accuracy (%) Time per epoch
(min)

ODE-RNN7 72.41 ± 1.69 14.57

CT-RNN48 72.05 ± 0.71 17.30

Augmented LSTM44 82.10 ± 4.36 2.48

CT-GRU49 87.51 ± 1.57 3.81

RNN-Decay7 88.93 ± 4.06 3.64

Bi-directional RNN7 94.43 ± 0.23 8.097

GRU-D51 95.44 ± 0.34 3.42

PhasedLSTM52 86.79 ± 1.57 5.69

GRU-ODE7 80.95 ± 1.52 6.76

CT-LSTM50 94.84 ± 0.17 3.84

coRNN57 94.44 ± 0.24 3.90

Lipschitz RNN58 95.92 ± 0.16 3.86

ODE-LSTM9 95.73 ± 0.24 6.35

Cf-S (current work) 95.23 ± 0.16 2.73

CfC-noGate (current work) 96.99 ± 0.30 3.36

CfC (current work) 95.42 ± 0.21 3.62

CfC-mmRNN (current work) 98.09 ± 0.18 5.50

Test accuracy shown as mean ± s.d. (n = 5). Bold values indicate the highest accuracy and best
time per epoch (min).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 998

Article https://doi.org/10.1038/s42256-022-00556-7

d
dt
x(t) = − [wτ + f(I(t))] ⋅ x(t) + Af(I(t)). (5)

Therefore, we can use the theory of linear ODEs to obtain an inte-
gral closed-form solution (section 1.10 in ref. 21) consisting of two nested
integrals. The inner integral can be eliminated by means of integration
by substitution43. The remaining integral expression can then be solved
in the case of piecewise constant inputs and approximated in the case
of general inputs. The three steps of the proof are outlined below.

Integral closed-form solution of LTC
We consider the ODE semantics of a single neuron that receives some
arbitrary continuous input signal I and has a positive, bounded, con-
tinuous and monotonically increasing nonlinearity f:

d
dt
x(t) = − [wτ + f(I(t))] ⋅ x(t) + A ⋅ [wτ + f(I(t))] .

Assumption. We assumed a second constant value wτ in the above
representation of a single LTC neuron. This is done to introduce sym-
metry in the structure of the ODE, yielding a simpler expression for
the solution. The inclusion of this second constant may appear to
profoundly alter the dynamics. However, as shown below, numerical
experiments suggest that this simplifying assumption has a marginal
effect on the ability to approximate LTC cell dynamics.

Using the variation of constants formula (section 1.10 in ref. 21), we
obtain after some simplifications:

x(t) = (x(0) − A)e−wτt−∫
t
0 f(I(s))ds + A. (6)

Analytical LTC solution for piecewise constant inputs
The derivation of a useful closed-form expression of x requires us to solve
the integral expression ∫t0 f(I(s))ds for any t ≥ 0. Fortunately, the integral
∫t0 f(I(s))ds enjoys a simple closed-form expression for piecewise constant
inputs I. Specifically, assume that we are given a sequence of time points

0 = τ0 < τ1 < τ2 < … < τn−1 < τn = ∞,

such that τ1,… , τn−1 ∈ ℝ and I(t) = γi for all t ∈ [τi; τi+1) with 0 ≤ i ≤n − 1.
Then, it holds that

∫
t

0
f(I(s))ds = f(γk)(t − τk) +

k−1
∑
i=0
f(γi)(τi+1 − τi), (7)

when τk ≤ t < τk+1 for some 0 ≤ k ≤ n − 1 (as usual, one defines ∑−1
i=0 ∶= 0).

With this, we have

x(t) = (x(0) − A)e−wτte
−f(γk)(t−τk)−

k−1
∑
i=0

f(γi)(τi+1−τi)
+ A, (8)

when τk ≤ t < τk+1 for some 0 ≤ k ≤ n − 1. While any continuous input can
be approximated arbitrarily well by a piecewise constant input43, a tight
approximation may require a large number of discretization points
τ1, …, τn. We address this next.

Analytical LTC approximation for general inputs
Inspired by equations (7) and (8), the next result provides an analytical
approximation of x(t).

Lemma 1
For any Lipschitz continuous, positive, monotonically increasing and
bounded f and continuous input signal I(t), we approximate x(t) in equa-
tion (6) as

x̃(t) = (x(0) − A)e−[wτt+f(I(t))t]f(−I(t)) + A. (9)

Then, |x(t) − x̃(t)| ≤ |x(0) − A|e−wτt for all t ≥ 0. Writing c = x(0) − A for con-
venience, we can obtain the following sharpness results, additionally:

 1. For any t ≥ 0, we have sup { 1
c
(x(t) − x̃(t))|I ∶ [0; t] → ℝ} = e−wτt.

 2. For any t ≥ 0, we have inf { 1
c
(x(t) − x̃(t))|I ∶ [0; t] → ℝ} = e−wτt(e−t − 1).

Above, the supremum and infimum are meant to be taken across all
continuous input signals. These statements settle the question about the
worst-case errors of the approximation. The first statement implies, in
particular, that our bound is sharp.

The full proof is given in the next section. Lemma 1 demonstrates
that the integral solution we obtained and shown in equation (6) is
tightly close to the approximate closed-form solution we proposed in
equation (9). Note that, as wτ is positively defined, the derived bound
between equations (6) and (9) ensures an exponentially decaying error
as time goes by. Therefore, we have the statement of the theorem. □

Proof of lemma 1
We start by noting that

x(t) − x̃(t) = c e−wτt [e−∫t0 f(I(s))ds − e−f(I(t))tf(−I(t))] .

Since 0 ≤ f ≤ 1, we conclude that e−∫t0 f(I(s))ds ∈ [0; 1] and e−f(I(t))tf(−I
(t)) ∈ [0; 1]. This shows that |x(t) − x̃(t)| ≤ |c|e−wτt. To see the sharpness
results, pick some arbitrary small ε > 0 and a sufficiently large C > 0
such that f(−C) ≤ ε and 1 − ε ≤ f(C). With this, for any 0 < δ < t, we consider
the piecewise constant input signal I such that I(s) = −C for s ∈ [0; t − δ]
and I(s) = C for s ∈ (t − δ; t]. Then, it can be noted that

e−∫t0 f(I(s))ds − e−f(I(t))tf(−I(t)) ≥

e−εt−δ⋅1 − e−(1−ε)⋅tε→ 1, when ε,δ→ 0
.

Statement 1 follows by noting that there exists a family of continu-
ous signals In ∶ [0; t] → ℝ such that ∣In( ⋅ )∣ ≤ C for all n ≥ 1 and In → I point-
wise as n → ∞. This is because

lim
n→∞

| ∫t0 f(I(s))ds − ∫t0 f(In(s))ds | ≤

lim
n→∞

∫t0 | f(I(s)) − f(In(s))|ds ≤ lim
n→∞

L∫t0 |I(s) − In(s)|ds

= 0

,

where L is the Lipschitz constant of f, and the last identity is due to the
dominated convergence theorem43. To see statement 2, we first note
that the negation of the signal −I provides us with

e−∫t0 f(−I(s))ds − e−f(−I(t))tf(I(t)) ≤

e−(1−ε)(t−δ)−δ⋅0 − e−ε⋅t(1 − ε) → e−t − 1,

if ε, δ → 0. The fact that the left-hand side of the last inequality must be
at least e−t − 1 follows by observing that e−t ≤ e−∫t0 f(I′(s))ds and
e−f(I″(t))tf( − I″(t)) ≤ 1 for any I′, I′′ ∶ [0; t] → ℝ. □

Compiling LTC architectures into their closed-form equivalent
In general, it is possible to compile the architecture of an LTC net-
work into its closed-form version. This compilation allows us to
speed up the training and inference time of ODE-based networks
as the closed-form variant does not require complex ODE solvers to
compute outputs. Algorithm 1 provides the instructions on how to
transfer the architecture of an LTC network into its closed-form vari-
ant. Here, WAdj corresponds to the adjacency matrix that maps exog-
enous inputs to hidden states and the coupling among hidden states.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 999

Article https://doi.org/10.1038/s42256-022-00556-7

This adjacency matrix can have an arbitrary sparsity (that is, there
is no need to use a directed acyclic graph for the coupling between
neurons).

Algorithm 1. Translate the architecture of an LTC network into its
closed-form variant

 Inputs: LTC inputs I(N×T)(t), the activity x(H×T)(t) and initial states
x(H×1)(0) of LTC neurons and the adjacency matrix for synapses
W[(N+H)∗(N+H)]
Adj

 LTC ODE solver with step of Δt
 time-instance vectors of inputs, t(1×T)I(t)
 time-instance of LTC neurons tx(t) ∇ time might be sampled

irregularly
 LTC neuron parameter τ(H×1)

 LTC network synaptic parameters {σ(N×H), μ(N×H), A(N×H)}
 Outputs: LTC closed-form approximation of hidden state neu-

rons, x̂(N×T)(t)
 xpre(t) = WAdj × [I0…IN, x0…xH] ∇ all presynaptic signals to

nodes
 for ith neuron in neurons 1 to H do
 for j in Synapses to ith neuron do

 ̂xi+ = (x0 − Aij)e
[−tx(t)⊙(1/τi+

1

1+e
(−σij(xpreij −μij))

))]
⊙ 1

1+e(σij(xpreij −μij))
+ Aij

 end for
 end for
 return x̂(t)

Experimental details of the tightness experiment
We took a trained NCP22, which consists of a perception module and an
LTC-based network1 that possesses 19 neurons and 253 synapses. The
network was trained to steer a self-driving vehicle autonomously. We
used recorded real-world test runs of the vehicle for a lane-keeping
task governed by this network. The records included the inputs,
outputs and all the LTC neurons’ activities and parameters. To per-
form a numerical evaluation of our theory to determine whether our
proposed closed-form solution for LTC neurons is good enough in
practice as well, we inserted the parameters for individual neurons
and synapses of the DEs into the closed-form solution (similar to the
representations shown in Extended Data Fig. 1b,c) and emulated the
structure of the ODE-based LTC networks. We then visualized the
output neuron’s dynamics of the ODE (in blue) and of the closed-form
solution (in red). As illustrated in Fig. 2, we observed that the behav-
iour of the ODE is captured by the closed-form solution with a mean
squared error of 0.006. This experiment provides numerical evi-
dence for the tightness results presented in our theory. Hence, the
closed-form solution contains the main properties of liquid networks
in approximating dynamics.

Baseline models
The example baseline models considered include some variations of
classical auto-regressive RNNs, such as an RNN with concatenated
Δt (RNN-Δt), a recurrent model with moving average on missing val-
ues (RNN-impute), RNN-Decay7, LSTMs44 and gated recurrent units
(GRUs)45. We also report results for a variety of encoder–decoder
ODE-RNN-based models, such as RNN-VAE, latent variable models
with RNNs, and with ODEs, all from ref. 7.

Furthermore, we include models such as interpolation prediction
networks (IP-Net)46, set functions for time series (SeFT)47, CT-RNN48,
CT-GRU49, CT-LSTM50, GRU-D51, PhasedLSTM52 and bi-directional
RNNs53. Finally, we benchmarked CfCs against competitive recent
RNN architectures with the premise of tackling long-term depend-
ences, such as Legandre memory units54, high-order polynomial projec-
tion operators (Hippo)55, orthogonal recurrent models (expRNNs)56,
mixed memory RNNs such as ODE-LSTMs9, coupled oscillatory RNNs
(coRNN)57 and Lipschitz RNN58.

Experimental details for the Walker2D dataset
This task is designed based on the Walker2d-v2 OpenAI gym59 environ-
ment using data from four different stochastic policies. The objective
is to predict the physics state in the next time step. The training and
testing sequences are provided at irregularly sampled intervals. We
report the squared error on the test set as a metric.

Description of the event-based MNIST experiment
We first sequentialize each image by transforming each 28 × 28 image
into a long series of length 784. The objective is to predict the class
corresponding to each image from the long input sequence. Advanced
sequence modelling frameworks such as coRNN57, Lipschitz RNN58 and
mixed memory ODE-LSTM9 can solve this task very well with accuracy
of up to 99.0%. However, we aim to make the task even more challeng-
ing by sparsifying the input vectors with event-like irregularly sampled
mechanisms. To this end, in each vector input (that is, flattened image),
we transform each consecutive occurrence of values into one event.
For instance, within the long binary vector of an image, the sequence
1, 1, 1, 1 is transformed to (1, t = 4) (ref. 9). This way, sequences of length
784 are condensed into event-based irregularly sampled sequences of
length 256 that are far more challenging to handle than equidistance
input signals. A recurrent model now has to learn to memorize input
information of length 256 while keeping track of the time lags between
the events.

Description of the event-based XOR encoding experiment
The bit streams are provided in densely sampled and event-based
sampled formats. The densely sampled version simply represents
an incoming bit as an input event. The event-based sampled version
transmits only bit changes to the network, that is, multiple equal bits
are packed into a single input event. Consequently, the densely sam-
pled variant is a regular sequence classification problem, whereas
the event-based encoding variant represents an irregularly sampled
sequence classification problem.

Experimental details of the IMDB dataset experiment
Each sentence corresponds to either positive or negative sentiment.
We tokenize the sentences in a word-by-word fashion with a vocabulary
consisting of the 20,000 words occurring most frequently in the data-
set. We map each token to a vector using trainable word embedding.
The word embedding is initialized randomly. No pretraining of the
network or word embedding is performed.

Setting of the driving experiment
It has been shown that models based on LTC networks are more robust
when trained on offline demonstrations and tested online in closed
loop with their environments, in many end-to-end robot control tasks
such as mobile robots60, autonomous ground vehicles22 and autono-
mous aerial vehicles24,61. This robustness in decision-making (that is,
their flexibility in learning and executing the task from demonstrations
despite environmental or observational disturbances and distribu-
tional shifts) originates from their model semantics that formally
reduces to dynamic causal models20,24. Intuitively, LTC-based networks
learn to extract a good representation of the task they are given (for
example, their attention maps indicate what representation they have
learned to focus on the road with more attention to the road’s horizon)
and maintain this understanding under heavy distribution shifts. An
example is illustrated in Extended Data Fig. 10.

In this experiment, we aim to investigate whether CfC models and
their variants, such as CfC-mmRNN, possess this robustness charac-
teristic (maintaining their attention map under distribution shifts and
added noise), similar to their ODE counterparts (LTC-based networks
called NCPs22).

We start by training neural network architectures that pos-
sess a convolutional head stacked with the choice of RNN. The RNN

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 1000

Article https://doi.org/10.1038/s42256-022-00556-7

compartment of the networks is replaced by LSTM networks, NCPs22,
Cf-S, CfC-NoGate and CfC-mmRNN. We also trained a fully convolu-
tional neural network for the sake of proper comparison. Our train-
ing pipeline followed an imitation learning approach with paired
pixel-control data from a 30 Hz BlackFly PGE-23S3C red–green–blue
camera, collected by a human expert driver across a variety of rural driv-
ing environments, including different times of day, weather conditions
and seasons of the year. The original 3 h data set was further augmented
to include off-orientation recovery data using a privileged controller62
and a data-driven view synthesizer63. The privileged controller enabled
the training of all networks using guided policy learning64. After train-
ing, all networks were transferred on-board our full-scale autonomous
vehicle (Lexus RX450H, retrofitted with drive-by-wire capability). The
vehicle was consistently started at the centre of the lane, initialized with
each trained model and run to completion at the end of the road. If the
model exited the bounds of the lane, a human safety driver intervened
and restarted the model from the centre of the road at the intervention
location. All models were tested with and without noise added to the
sensory inputs to evaluate robustness.

The testing environment consisted of 1 km of private test road with
unlabelled lane markers, and we observed that all trained networks
were able to successfully complete the lane-keeping task at a constant
velocity of 30 km h−1. Extended Data Fig. 10 provides an insight into how
these networks reach driving decisions. To this end, we computed the
attention of each network while driving by using the VisualBackProp
algorithm65.

Related works on continuous-time models
Continuous-time models. Machine learning, control theory
and dynamical systems merge at models with continuous-time
dynamics60,66–69. In a seminal work, Chen et al.2,7 revived the class
of continuous-time neural networks48,70, with neural ODEs. These
continuous-depth models give rise to vector field representations
and a set of functions that were not possible to generate before with
discrete neural networks. These capabilities enabled flexible density
estimation3–5,71,72 as well as performant modelling of sequential and
irregularly sampled data1,7–9,58. In this paper, we showed how to relax
the need for an ODE solver to realize an expressive continuous-time
neural network model for challenging time-series problems.

Improving neural ODEs. ODE-based neural networks are as good
as their ODE solvers. As the complexity or the dimensionality of
the modelling task increases, ODE-based networks demand a more
advanced solver that largely impacts their efficiency17, stability13,15,73–75
and performance1. A large body of research has studied how to
improve the computational overhead of these solvers, for example,
by designing hypersolvers17, deploying augmentation methods4,12,
pruning6 or regularizing the continuous flows14–16. To enhance the
performance of an ODE-based model, especially in time-series mod-
elling tasks76, solutions for stabilizing their gradient propagation
have been provided9,58,77. In this work, we showed that CfCs improve
the scalability, efficiency and performance of continuous-depth
neural models.

Which CfC variants to choose in different applications
Our extensive experimental results demonstrate that different CfC vari-
ants, namely Cf-S, CfC-noGate, vanilla CfC and CfC-mmRNN, achieve
comparable results to each other while one comes on top depending
on the nature of the data set. We suggest using CfC in most cases where
the sequence length is up to a couple of hundred steps. To capture
longer-range dependences, we recommend CfC-mmRNN. The Cf-S
variant is effective when we aim to obtain the fastest inference time.
CfC-noGate could be tested as a hyperparameter when using the vanilla
CfC as the primary choice of model.

Description of hyperparameters
The hyperparameters used in our experimental results are as follows:

•	 clipnorm: the gradient clipping norm (that is, the global norm
clipping threshold)

•	 optimizer: the weight update preconditioner (for example,
Adam, Stochastic Gradient Descent with momentum, etc.)

•	 batch_size: the number of samples used to compute the
gradients

•	 hidden size: the number of RNN units
•	 epochs: the number of passes over the training dataset
•	 base_lr: the initial learning rate
•	 decay_lr: the factor by which the learning rate is multiplied after

each epoch
•	 backbone_activation: the activation function of the backbone

layers
•	 backbone_dr: the dropout rate of the backbone layers
•	 forget_bias: the forget gate bias (for mmRNN and LSTM)
•	 backbone_units: the number of hidden units per backbone layer
•	 backbone_layers: the number of backbone layers
•	 weight_decay: the L2 weight regularization factor
•	 τdata: the constant factor by which the elapsed time input is multi-

plied (default value 1)
•	 init: the gain of the Xavier uniform distribution for the weight

initialization (default value 1)

Data availability
All data and materials used in the analysis are openly available at https://
github.com/raminmh/CfC under an Apache 2.0 license for the purposes
of reproducing and extending the analysis.

Code availability
All code and materials used in the analysis are openly available at
https://github.com/raminmh/CfC under an Apache 2.0 license for
the purposes of reproducing and extending the analysis (https://doi.
org/10.5281/zenodo.7135472).

References
1. Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. Liquid

time-constant networks. In Proc. of AAAI Conference on Artificial
Intelligence 35(9), 7657–7666 (AAAI, 2021).

2. Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural
ordinary differential equations. In Proc. of Advances in Neural
Information Processing Systems (Eds. Bengio, S. et al.) 6571–6583
(NeurIPS, 2018).

3. Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I. &
Duvenaud, D. Ffjord: free-form continuous dynamics for scalable
reversible generative models. In International Conference on
Learning Representations (2018). https://openreview.net/
forum?id=rJxgknCcK7

4. Dupont, E., Doucet, A. & Teh, Y. W. Augmented neural ODEs. In
Proc. of Advances in Neural Information Processing Systems (Eds.
Wallach, H. et al.) 3134–3144 (NeurIPS, 2019).

5. Yang, G. et al. Pointflow: 3D point cloud generation with continuous
normalizing flows. In Proc. of the IEEE/CVF International Conference
on Computer Vision 4541–4550 (IEEE, 2019).

6. Liebenwein, L., Hasani, R., Amini, A. & Daniela, R. Sparse flows:
pruning continuous-depth models. In Proc. of Advances in Neural
Information Processing Systems (Eds. Ranzato, M. et al.) 22628–
22642 (NeurIPS, 2021).

7. Rubanova, Y., Chen, R. T. & Duvenaud, D. Latent Neural ODEs for
irregularly-sampled time series. In Proc. of Advances in Neural
Information Processing Systems (Eds. Wallach, H. et al.) 32
(NeurIPS, 2019).

http://www.nature.com/natmachintell
https://github.com/raminmh/CfC
https://github.com/raminmh/CfC
https://github.com/raminmh/CfC
https://doi.org/10.5281/zenodo.7135472
https://doi.org/10.5281/zenodo.7135472
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 1001

Article https://doi.org/10.1038/s42256-022-00556-7

8. Gholami, A., Keutzer, K. & Biros, G. ANODE: unconditionally
accurate memory-efficient gradients for neural ODEs. In
Proceedings of the 28th International Joint Conference on Artificial
Intelligence 730–736 (IJCAI, 2019).

9. Lechner, M. & Hasani, R. Learning long-term dependencies in
irregularly-sampled time series. Preprint at https://arxiv.org/
abs/2006.04418 (2020).

10. Prince, P. J. & Dormand, J. R. High order embedded Runge–Kutta
formulae. J. Comput. Appl. Math. 7, 67–75 (1981).

11. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707 (2019).

12. Massaroli, S., Poli, M., Park, J., Yamashita, A. & Asma, H. Dissecting
neural ODEs. In Proc. of 33th Conference on Neural Information
Processing Systems (Eds. Larochelle, H. et al.) (NeurIPS, 2020).

13. Bai, S., Kolter, J. Z. & Koltun, V. Deep equilibrium models. Adv.
Neural Inform. Process. Syst. 32, 690–701 (2019).

14. Finlay, C., Jacobsen, J.-H., Nurbekyan, L. & Oberman, A. M. How
to train your neural ODE: the world of Jacobian and kinetic
regularization. In International Conference on Machine Learning
(Eds. Daumé III, H. & Singh, A.) 3154–3164 (PMLR, 2020).

15. Massaroli, S. et al. Stable Neural Flows. Preprint at https://arxiv.
org/abs/2003.08063 (2020).

16. Kidger, P., Chen, R. T. & Lyons, T. “Hey, that’s not an ODE”:
Faster ODE Adjoints via Seminorms. In Proceedings of the 38th
International Conference on Machine Learning (Eds. Meila, M. &
Zhang, T.) 139 (PMLR, 2021).

17. Poli, M. et al. Hypersolvers: toward fast continuous-depth models.
In Proc. of Advances in Neural Information Processing Systems
(Eds. Larochelle, H.) 21105–21117 (NeurIPS, 2020).

18. Schumacher, J., Haslinger, R. & Pipa, G. Statistical modeling
approach for detecting generalized synchronization. Phys. Rev. E
85, 056215 (2012).

19. Moran, R., Pinotsis, D. A. & Friston, K. Neural masses and
fields in dynamic causal modeling. Front. Comput. Neurosci. 7,
57 (2013).

20. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling.
Neuroimage 19, 1273–1302 (2003).

21. Perko, L. Differential Equations and Dynamical Systems
(Springer-Verlag, 1991).

22. Lechner, M. et al. Neural circuit policies enabling auditable
autonomy. Nat. Mach. Intell. 2, 642–652 (2020).

23. Hochreiter, S. Untersuchungen zu dynamischen neuronalen
netzen. Diploma, Technische Universität München 91 (1991).

24. Vorbach, C., Hasani, R., Amini, A., Lechner, M. & Rus, D. Causal
navigation by continuous-time neural networks. In Proc. of
Advances in Neural Information Processing Systems (Eds. Ranzato,
M. et al.) 12425–12440 (NeurIPS, 2021).

25. Hasani, R. et al. Response characterization for auditing cell
dynamics in long short-term memory networks. In Proc. of 2019
International Joint Conference on Neural Networks 1–8 (IEEE, 2019).

26. Anguita, D., Ghio, A., Oneto, L., Parra Perez, X. & Reyes Ortiz,
J. L. A public domain dataset for human activity recognition
using smartphones. In Proc. of the 21st International European
Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning 437–442 (i6doc, 2013).

27. Todorov, E., Erez, T. & Tassa, Y. MuJoCo: a physics engine for
model-based control. In Proc. of 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems 5026–5033
(IEEE, 2012).

28. Maas, A. et al. Learning word vectors for sentiment analysis.
In Proc. of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies
142–150 (ACM, 2011).

29. Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning
nonlinear operators via deeponet based on the universal
approximation theorem of operators. Nat. Mach. Intell. 3,
218–229 (2021).

30. Karniadakis, G. E. et al. Physics-informed machine learning.
Nat. Rev. Phys. 3, 422–440 (2021).

31. Wang, S., Wang, H. & Perdikaris, P. Learning the solution operator
of parametric partial differential equations with physics-informed
deeponets. Sci. Adv. 7, eabi8605 (2021).

32. Rezende, D. & Mohamed, S. Variational inference with normalizing
flows. In Proc. of International Conference on Machine Learning
(Eds. Bach, F. & Blei, D.) 1530–1538 (PMLR, 2015).

33. Gu, A., Goel, K. & Re, C. Efficiently modeling long sequences
with structured state spaces. In Proc. of International Conference
on Learning Representations (2022). https://openreview.net/
forum?id=uYLFoz1vlAC

34. Hasani, R. et al. Liquid structural state-space models. Preprint at
https://arxiv.org/abs/2209.12951 (2022).

35. Grunbacher, S. et al. On the verification of neural ODEs
with stochastic guarantees. Proc. AAAI Conf. Artif. Intell. 35,
11525–11535 (2021).

36. Vaswani, A. et al. Attention is all you need. In Proc. of Advances
in Neural Information Processing Systems (Eds. Guyon, I. et al.)
5998–6008 (NeurIPS, 2017).

37. Lechner, M., Hasani, R., Grosu, R., Rus, D. & Henzinger, T. A.
Adversarial training is not ready for robot learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA)
4140–4147 (IEEE, 2021).

38. Brunnbauer, A. et al. Latent imagination facilitates zero-shot
transfer in autonomous racing. In 2022 International Conference
on Robotics and Automation (ICRA) 7513–7520 (IEEE, 2021).

39. Hasani, R. M., Haerle, D. & Grosu, R. Efficient modeling of complex
analog integrated circuits using neural networks. In Proc. of 12th
Conference on Ph.D. Research in Microelectronics and Electronics
1–4 (IEEE, 2016).

40. Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R. & Brintrup, A. A
generative neural network model for the quality prediction of
work in progress products. Appl. Soft Comput. 85, 105683 (2019).

41. DelPreto, J. et al. Plug-and-play supervisory control using muscle
and brain signals for real-time gesture and error detection. Auton.
Robots 44, 1303–1322 (2020).

42. Hasani, R. Interpretable Recurrent Neural Networks in
Continuous-Time Control Environments. PhD dissertation,
Technische Univ. Wien (2020).

43. Rudin, W. Principles of Mathematical Analysis, 3rd edn.
(McGraw-Hill, 1976).

44. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural
Comput. 9, 1735–1780 (1997).

45. Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation
of gated recurrent neural networks on sequence modeling.
Preprint at https://arxiv.org/abs/1412.3555 (2014).

46. Shukla, S. N. & Marlin, B. Interpolation–prediction networks
for irregularly sampled time series. In Proc. of International
Conference on Learning Representations (2018). https://
openreview.net/forum?id=r1efr3C9Ym

47. Horn, M., Moor, M., Bock, C., Rieck, B. & Borgwardt, K. Set
functions for time series. In Proc. of International Conference on
Machine Learning (Eds. Daumé III, H. & Singh, A.) 4353–4363
(PMLR, 2020).

48. Funahashi, K.-i & Nakamura, Y. Approximation of dynamical
systems by continuous time recurrent neural networks. Neural
Netw. 6, 801–806 (1993).

49. Mozer, M. C., Kazakov, D. & Lindsey, R. V. Discrete event,
continuous time RNNs. Preprint at https://arxiv.org/abs/1710.04110
(2017).

http://www.nature.com/natmachintell
https://arxiv.org/abs/2006.04418
https://arxiv.org/abs/2006.04418
https://arxiv.org/abs/2003.08063
https://arxiv.org/abs/2003.08063
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2209.12951
https://arxiv.org/abs/1412.3555
https://openreview.net/forum?id=r1efr3C9Ym
https://openreview.net/forum?id=r1efr3C9Ym
https://arxiv.org/abs/1710.04110

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 1002

Article https://doi.org/10.1038/s42256-022-00556-7

50. Mei, H. & Eisner, J. The neural Hawkes process: a neurally
self-modulating multivariate point process. In Proc. of 31st
International Conference on Neural Information Processing
Systems (Eds. Guyon, I. et al.) 6757–6767 (Curran Associates
Inc., 2017).

51. Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent
neural networks for multivariate time series with missing values.
Sci. Rep. 8, 1–12 (2018).

52. Neil, D., Pfeiffer, M. & Liu, S.-C. Phased LSTM: accelerating
recurrent network training for long or event-based sequences.
In Proc. of 30th International Conference on Neural Information
Processing Systems (Eds. Lee, D. D. et al.) 3889–3897 (Curran
Associates Inc., 2016).

53. Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural
networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).

54. Voelker, A. R., Kajić, I. & Eliasmith, C. Legendre memory units:
continuous-time representation in recurrent neural networks.
In Proceedings of the 33rd International Conference on Neural
Information Processing Systems (Eds. Wallach, H. et al.) 15570–
15579 (ACM, 2019).

55. Gu, A., Dao, T., Ermon, S., Rudra, A. & Ré, C. Hippo: recurrent
memory with optimal polynomial projections. In Proc. of
Advances in Neural Information Processing Systems (Eds.
Larochelle, H. et al.) 1474–1487 (NeurIPS, 2020).

56. Lezcano-Casado, M. & Martınez-Rubio, D. Cheap orthogonal
constraints in neural networks: a simple parametrization of the
orthogonal and unitary group. In Proc. of International Conference
on Machine Learning (Eds. Chaudhuri, K. & Salakhutdinov, R.)
3794–3803 (PMLR, 2019).

57. Rusch, T. K. & Mishra, S. Coupled oscillatory recurrent
neural network (coRNN): an accurate and (gradient) stable
architecture for learning long time dependencies. In Proc. of
International Conference on Learning Representations (2021).
https://openreview.net/forum?id=F3s69XzWOia

58. Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L. &
Mahoney, M. W. Lipschitz recurrent neural networks. In Proc. of
International Conference on Learning Representations (2021).
https://openreview.net/forum?id=-N7PBXqOUJZ

59. Brockman, G. et al. OpenAI gym. Preprint at https://arxiv.org/
abs/1606.01540 (2016).

60. Lechner, M., Hasani, R., Zimmer, M., Henzinger, T. A. & Grosu,
R. Designing worm-inspired neural networks for interpretable
robotic control. In Proc. of International Conference on Robotics
and Automation 87–94 (IEEE, 2019).

61. Tylkin, P. et al. Interpretable autonomous flight via compact
visualizable neural circuit policies. IEEE Robot. Autom. Lett. 7,
3265–3272 (2022).

62. Amini, A. et al. Vista 2.0: An open, data-driven simulator for
multimodal sensing and policy learning for autonomous vehicles.
In 2022 International Conference on Robotics and Automation
(ICRA) 2419–2426 (IEEE, 2022).

63. Amini, A. et al. Learning robust control policies for end-to-end
autonomous driving from data-driven simulation. IEEE Robot.
Autom. Lett. 5, 1143–1150 (2020).

64. Levine, S. & Koltun, V. Guided policy search. In Proc. of
International Conference on Machine Learning (Eds. Dasgupta, S.
& McAllester, D.) 1–9 (PMLR, 2013).

65. Bojarski, M. et al. VisualBackProp: efficient visualization of CNNs
for autonomous driving. In Proc. of IEEE International Conference
on Robotics and Automation 1–8 (IEEE, 2018).

66. Zhang, H., Wang, Z. & Liu, D. A comprehensive review of stability
analysis of continuous-time recurrent neural networks. IEEE Trans.
Neural Netw. Learn. Syst 25, 1229–1262 (2014).

67. Weinan, E. A proposal on machine learning via dynamical
systems. Commun. Math. Stat. 5, 1–11 (2017).

68. Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The expressive power of
neural networks: a view from the width. In Proc. of Advances in
Neural Information Processing Systems (Eds. Guyon, I. et al.) 30
(Curran Associates, Inc 2017).

69. Li, Q., Chen, L., Tai, C. et al. Maximum principle based algorithms
for deep learning. J. Mach. Learn. Res. 18, 5998–6026 (2018).

70. Cohen, M. A. & Grossberg, S. Absolute stability of global pattern
formation and parallel memory storage by competitive neural
networks. IEEE Trans. Syst. Man Cybern. 5, 815–826 (1983).

71. Mathieu, E. & Nickel, M. Riemannian continuous normalizing
flows. In Proc. of Advances in Neural Information Processing
Systems Vol. 33 (eds Larochelle et al.) 2503–2515 (Curran
Associates, Inc., 2020).

72. Hodgkinson, L., van der Heide, C., Roosta, F. & Mahoney, M. W.
Stochastic normalizing flows. In Proc. of Advances in Neural
Information Processing Systems (Eds. Larochelle, H. et al.)
5933–5944 (NeurIPS, 2020).

73. Haber, E., Lensink, K., Treister, E. & Ruthotto, L. IMEXnet a forward
stable deep neural network. In Proc. of International Conference
on Machine Learning (Eds. Chaudhuri, K. & Salakhutdinov, R.)
2525–2534 (PMLR, 2019).

74. Chang, B., Chen, M., Haber, E. & Chi, E. H. AntisymmetricRNN:
a dynamical system view on recurrent neural networks. In
International Conference on Learning Representations (2018).
https://openreview.net/forum?id=ryxepo0cFX

75. Lechner, M., Hasani, R., Rus, D. & Grosu, R. Gershgorin loss
stabilizes the recurrent neural network compartment of an
end-to-end robot learning scheme. In Proc. of IEEE International
Conference on Robotics and Automation 5446–5452 (IEEE, 2020).

76. Gleeson, P., Lung, D., Grosu, R., Hasani, R. & Larson, S. D. c302:
a multiscale framework for modelling the nervous system of
Caenorhabditis elegans. Philos.Trans. R. Soc. B 373, 20170379 (2018).

77. Li, X., Wong, T.-K. L., Chen, R. T. & Duvenaud, D. Scalable gradients
for stochastic differential equations. In Proc. of International
Conference on Artificial Intelligence and Statistics 3870–3882
(PMLR, 2020).

78. Shukla, S. N. & Marlin, B. M. Multi-time attention networks for
irregularly sampled time series. In International Conference on
Learning Representations (2020). https://openreview.net/
forum?id=4c0J6lwQ4_

79. Xiong, Y. et al. Nyströmformer: a Nyström-based algorithm
for approximating self-attention. In Proceedings of the AAAI
Conference on Artificial Intelligence Vol. 35, No. 16, pp.
14138–14148 (AAAI, 2021).

Acknowledgements
This research was supported in part by the AI2050 program at
Schmidt Futures (grant G-22-63172), the Boeing Company, and the
United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished
under cooperative agreement number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any
copyright notation herein. This work was further supported by The
Boeing Company and Office of Naval Research grant N00014-18-1-
2830. M.T. is supported by the Poul Due Jensen Foundation, grant
883901. M.L. was supported in part by the Austrian Science Fund
under grant Z211-N23 (Wittgenstein Award). A.A. was supported by the
National Science Foundation Graduate Research Fellowship Program.
We thank T.-H. Wang, P. Kao, M. Chahine, W. Xiao, X. Li, L. Yin and Y. Ben
for useful suggestions and for testing of CfC models to confirm the
results across other domains.

http://www.nature.com/natmachintell
https://openreview.net/forum?id=F3s69XzWOia
https://openreview.net/forum?id=-N7PBXqOUJZ
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://openreview.net/forum?id=ryxepo0cFX
https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=4c0J6lwQ4_

Nature Machine Intelligence | Volume 4 | November 2022 | 992–1003 1003

Article https://doi.org/10.1038/s42256-022-00556-7

Author contributions
R.H. and M.L. conceptualized, proved theory, designed, performed
research and analysed data. A.A. contributed to designing research,
data curation, research implementation, new analytical tools and
analysed data. L.L. and A.R. contributed to the refinement of the
theory and research implementation. M.T. and G.T. proved theory and
analysed correctness. D.R. helped with the design of the research, and
guided and supervised the work. All authors wrote the paper.

Competing interests
The authors declare no competing interest.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-022-00556-7.

Correspondence and requests for materials should be addressed
to Ramin Hasani.

Peer review information Nature Machine Intelligence thanks Karl
Friston and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022, corrected publication 2022

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-022-00556-7
https://doi.org/10.1038/s42256-022-00556-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 1 | Instantiation of LTCs in ODE and closed-form representations. a) A sample LTC network with two nodes and five synapses. b) the ODE
representation of this two-neuron system. c) the approximate closed-form representation of the network.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 2 | Closed-form Continuous-depth neural architecture. A backbone neural network layer delivers the input signals into three head networks g, f
and h. f acts as a liquid time-constant for the sigmoidal time-gates of the network. g and h construct the nonlinearities of the overall CfC network.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 3 | Hyperparameters for Human activity and Walker. List of hyperparameters used to obtain results in Human activity and Walker2D
Experiments.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 4 | Hyperparameters for ET-sMNIST and Bit-stream XOR. List of hyperparameters used to obtain results in Event-based MNIST and Bit-stream
XOR Experiments.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 5 | Bit-stream XOR sequence classification. The performance values (accuracy %) for all baseline models are reproduced from9. Numbers present
mean ± standard deviations, (n=5). Note: The performance of models marked by † are reported from9. Bold declares highest accuracy and best time per epoch (min).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 6 | PhysioNet. AUC stands for area under curve. Numbers present mean ± standard deviations, (n=5). Note: The performance of the models
marked by † are reported from 7 and the ones with * from78. Bold declares highest AUC score and best time per epoch (min).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 7 | Hyperparameters for Physionet and IMDB. List of hyperparameters used to obtain results in Physionet and IMDB sentiment classification
experiments.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 8 | Results on the IMDB datasets. The experiment is
performed without any pretraining or pretrained word-embeddings. Thus, we
excluded advanced attention-based models78,79 such as Transformers36 and RNN
structures that use pretraining. Numbers present mean ± standard deviations,

(n=5). Note: The performance of the models marked by † are reported from55, and
* are reported from57. The n/a standard deviation denotes that the original report
of these experiments did not provide the statistics of their analysis. Bold declares
highest accuracy and best time per epoch (min).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 9 | Lane-keeping models’ parameter count. CfC and NCP networks perform lane-keeping in unseen scenarios with a compact representation.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00556-7

Extended Data Fig. 10 | Attention Profile of networks. Trained networks
receive unseen inputs (first column in each tab) and generate acceleration and
steering commands. We use the Visual-Backprop algorithm65 to compute the
saliency maps of the convolutional part of each network. a) results for networks

tested on data collected in summer. b) results for networks tested on data
collected in winter. c) results for inputs corrupted by a zero-mean Gaussian noise
with variance, σ2 = 0.35.

http://www.nature.com/natmachintell

	Closed-form continuous-time neural networks
	Deriving an approximate closed-form solution for neural interactions
	Explicit time dependence
	Sequence and time-step prediction efficiency
	CfCs: flexible deep models for sequential tasks
	Deriving a closed-form solution
	Theorem 1
	Tightness of the closed-form solution in practice
	Designing CfC models from the solution
	Resolving the gradient issues
	Replacing biases by learnable instances
	Gating balance
	Backbone
	The procedure to account for the explicit time dependence
	Experiments with CfCs
	CfC network variants
	Baselines
	Human activity recognition
	Physical dynamics modelling
	Event-based sequential image processing
	Regularly and irregularly sampled bit-stream XOR
	PhysioNet Challenge
	Sentiment analysis using IMDB
	Performance of CfCs in autonomous driving
	Scope, discussion and conclusions
	What are the limitations of CfCs?
	Ethics statement

	Methods
	Proof of theorem 1
	Integral closed-form solution of LTC
	Analytical LTC solution for piecewise constant inputs
	Analytical LTC approximation for general inputs
	Lemma 1
	Proof of lemma 1
	Compiling LTC architectures into their closed-form equivalent
	Experimental details of the tightness experiment
	Baseline models
	Experimental details for the Walker2D dataset
	Description of the event-based MNIST experiment
	Description of the event-based XOR encoding experiment
	Experimental details of the IMDB dataset experiment
	Setting of the driving experiment
	Related works on continuous-time models
	Continuous-time models
	Improving neural ODEs

	Which CfC variants to choose in different applications
	Description of hyperparameters

	Acknowledgements
	Fig. 1 Neural and synapse dynamics.
	Fig. 2 Tightness of the closed-form solution in practice.
	Extended Data Fig. 1 Instantiation of LTCs in ODE and closed-form representations.
	Extended Data Fig. 2 Closed-form Continuous-depth neural architecture.
	Extended Data Fig. 3 Hyperparameters for Human activity and Walker.
	Extended Data Fig. 4 Hyperparameters for ET-sMNIST and Bit-stream XOR.
	Extended Data Fig. 5 Bit-stream XOR sequence classification.
	Extended Data Fig. 6 PhysioNet.
	Extended Data Fig. 7 Hyperparameters for Physionet and IMDB.
	Extended Data Fig. 8 Results on the IMDB datasets.
	Extended Data Fig. 9 Lane-keeping models’ parameter count.
	Extended Data Fig. 10 Attention Profile of networks.
	Table 1 Computational complexity of models.
	Table 2 Human activity recognition, per time-step classification.
	Table 3 Per time-step regression.
	Table 4 Event-based sequence classification on irregularly sequential MNIST.

