
Contract-Based Safety Verification for Autonomous
Driving

by

Lucas Liebenwein

B.Sc., Swiss Federal Institute of Technology Zurich (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2018

Certified by. .
Daniela Rus

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Contract-Based Safety Verification for Autonomous Driving

by

Lucas Liebenwein

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The safe, successful deployment of autonomous systems under real-world conditions,
in part, hinges upon providing rigorous performance and safety guarantees. This
thesis considers the problem of establishing and verifying the safety of autonomous
systems. To this end, we present a novel framework for the synthesis of safety con-
straints for autonomous systems, so-called safety contracts, that can be applied to
and used by a wide set of real-world systems by acting as a design requirement for
the controller implementation of the system. The contracts consider a large variety
of road models, guarantee that the controlled system will remain safe with respect to
probabilistic models of traffic behavior, and ensure that it will follow the rules of the
road. We generate contracts using reachability analysis in a reach-avoid problem un-
der consideration of dynamic obstacles, i.e., other traffic participants. Contracts are
then derived directly from the reachable sets. By decomposing large road networks
into local road geometries and defining assume-guarantee contracts between local
geometries, we enable computational tractability over large spatial domains. To effi-
ciently account for the behavior of other traffic participants, we iteratively alternate
between falsification to generate new traffic scenarios that violate the safety contract
and reachable set computation to update the safety contract. These counterexamples
to collision-free behavior are found by solving a gradient-based trajectory optimiza-
tion problem. We demonstrate the practical effectiveness of the proposed methods
in a set of experiments involving the Manhattan road network as well as interacting
multi-car traffic scenarios.

Thesis Supervisor: Daniela Rus
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to start by thanking my advisor, Daniela Rus, who has been a constant

source of inspiration and motivation throughout the last two years at the Distributed

Robotics Lab. Her counseling and guidance have helped me over and over again, and

allowed me to step into the world of research. It has been an invaluable experience

and I look forward to the coming years.

I would also like to thank Sertac Karaman who has provided me with crucial

insights during our many meetings and discussions. Cristian-Ioan Vasile and Jonathan

DeCastro also deserve particular thanks for all their hard work and enlightening

moments. They introduced me to formal methods and verification, and have taught

me a great deal about these techniques. Many of the ideas in this thesis originated

from our discussions.

During my undergraduate research, I was lucky enough to be advised by Max

Kriegleder and Raffaello D’Andrea. It was my first exposure to robotics, and I have

been in the field since then. I will always be grateful to them for guiding me through

this time and teaching me so much about science. When I first visited MIT, Emilio

Frazzoli took it upon him to help me choose an advisor and introduced me to Daniela.

His counseling during these days was a tremendous support to help me settle into

graduate school.

My time here would have not been the same without the members of the Dis-

tributed Robotics Lab, many of which have become my dear friends. I would like

to thank Felix Naser, with whom I shared an office for a year. Our countless crazy

moments are a more than welcoming distraction to keep a fresh mind. I will always

remember the endless hours and nights Cenk Baykal and I have spent solving prob-

lem sets and working on research. Cenk’s passion for theoretical computer science has

inspired me to strike a new path in my research. I am fortunate to be able to call him

my close collaborator, office neighbor, and friend. I would also like to acknowledge

my other friends and members of the lab, including Brandon Araki, Thomas Balch,

Igor Gilitschenski, Robert Katzschmann, Teddy Ort, Wilko Schwarting, Alex Wallar,

5

and many more. It is an honor to be part of such a unique group of people.

I would have never come this far if it were not for my family. Their unconditional

love and support gave me strength and courage to pursue my dreams. Among my

many family members, I would like to thank my mother, Jutta, for all the moments of

counseling and advice in every aspect of my life; my father, Karl, for being there when

it matters the most; my sister, Leonie, for being the best sister one could imagine;

my two brothers, Constantin and Nicolaus, for being such sweet and joyful boys; my

aunt and uncle, Karin and Wolfgang, for always having an open ear for my sorrows;

and my grandmother, Berta, for being such an inspiration and role model to look up

to.

Finally, I would like to thank my wife and love of my life, Pia. She has been there

for me at every imaginable moment to guide me, support me through my struggles,

and give me the strength when I needed it the most. I could not be here without her.

Her passion, joy, and wonderful heart are unparalleled and made me into the person

I am today.

I dedicate this thesis to you, Pia.

6

Contents

1 Introduction 17

1.1 Contributions . 21

1.2 Outline of Thesis . 21

2 Related Work 23

2.1 Local Motion Planning . 23

2.2 Reachability Analysis . 24

2.3 Verification and Synthesis . 25

2.4 Falsification . 27

3 Contract Synthesis with Known, Dynamic Obstacles 29

3.1 Problem Definition . 29

3.1.1 Ego-car . 30

3.1.2 Road Network . 30

3.1.3 Traffic . 30

3.1.4 Controllers and Driving Behaviors 31

3.1.5 Safety . 31

3.2 Methods . 32

3.2.1 Library of Parameterized Models 34

3.2.2 Reachability Analysis . 35

3.2.3 Verification of Controller Contracts 36

3.2.4 Road Network Verification . 39

3.3 Analysis . 40

7

3.4 Implementation . 41

3.4.1 Reachability Tool . 41

3.4.2 Set Representation . 42

3.4.3 Set Pruning . 42

3.4.4 Reduction of Complexity . 42

3.5 Results . 45

3.5.1 Dynamic Motion Model and Dynamic Constraints 45

3.5.2 Other Vehicles . 46

3.5.3 Drivable Space . 47

3.5.4 Rules of the Road . 48

3.5.5 Admissible Configurations . 48

3.5.6 Road Library and Network . 49

3.5.7 Traffic Model . 49

3.5.8 Experiments . 50

4 Contract Synthesis with Counterexample-Guided Obstacles 55

4.1 Problem Definition . 55

4.1.1 Stochastic Models of the Traffic System 56

4.1.2 Problem Formulation . 57

4.2 Methods . 58

4.2.1 Overview . 58

4.2.2 Gradient-Based Probabilistic Falsification 60

4.2.3 Collision-Free Safety Conditions 62

4.2.4 Reachability with Contracts 63

4.2.5 Computation of Contract . 64

4.2.6 Rules of the Road . 65

4.3 Implementation . 66

4.4 Results . 69

5 Conclusion 73

5.1 Conclusion . 73

8

5.2 Future Work . 74

5.3 Lessons Learned . 75

5.4 Funding . 76

9

10

List of Figures

1-1 The network shows the Manhattan street grid. We verified a part of

Manhattan consisting of ca. 130 blocks with 180 intersections and 330

straight road segments (marked black) using a library of 22 verified

segments. This underlines the gain in efficiency of the compositional-

based approach compared to that of a direct naive approach. 18

3-1 Consider the library ℳ = {𝑚1,𝑚2} composed of a straight road 𝑚1

and a four-way intersection 𝑚2. (a) The four-way intersection 𝑚2 is

shown. (b) The entry set is propagated forward, and, (c), concurrently

pruned of unsafe states induced by other cars. (d) The safe exit set is

the intersection of the safe reachable set at time step 𝐻, the verifica-

tion horizon, and the exit set. (e) The safe entry set is computed by

backward propagating the safe exit set. (f) Lastly, the composition of

the models using the associated assume-guarantee contracts enables us

to certify road networks. 34

3-2 (a) The exact Minkowski swept volume between the ego-car and an-

other vehicle, which represents configurations in collision, is shown.

(b) Drivable space in a four-way intersection left-turn scenario obtained

by taking the Minkowski sum between the rectangular ego-car and the

road over Δ𝑞, i.e., D(𝒵). This is used to trim the admissible state

space. Because of symmetry and for brevity, 𝜃 is only shown for [0, 𝜋].

Approximations to 10 𝜃-slices are used in the implementation to reduce

computational complexity. 47

11

3-3 The dynamic obstacles (black) and the drivable space (grey) are shown

for time 𝑘 on the left. Set subtraction yields the admissible configura-

tion volume A𝑘 (right). 49

3-4 The forward propagation of the reachable set is shown for a left turning

maneuver. Blue sets indicate the safely reachable configuration set

𝑔𝑞 (̃𝑍𝑘) (top row), and the position set 𝑔𝑝(̃𝑍𝑘) (bottom row) of the

ego-car for various times 𝑘. Black sets mark the swept volume C𝑖
𝑘(𝒵)

(top row) and the footprint ℬ𝑖(𝑥𝑖𝑘;ℛ) (bottom row) of other traffic

participants. The entry and exit sets are shown in green and red,

respectively. Note how the ego-car maintains a safe distance to the

other cars and the road boundaries at all times. 51

3-5 Backward propagation on the four-way intersection 𝑚 for various times

𝑘. At 𝑡 = 6.0𝑠, we start out at̂ 𝑍𝑇 = 𝑒𝑥𝑖𝑡(𝑚, 1, 4) = O4 and compute

the backward reachable set̂ 𝑍𝑘 (marked blue) for each time 𝑘 to obtain

the safe entry set 𝑒𝑛𝑡𝑟𝑦(𝑚, 1, 4). 52

3-6 A selection of verified road models, comprised of various intersections

and straight roads, is shown together with the reachable set (blue) and

other traffic participants (black) at the indicated timestep. The initial

and final set are marked green and red, respectively. 53

3-7 The box plot indicates computation times for various parts of one it-

eration with a fixed timestep of ℎ = 0.05𝑠 averaged over all conducted

experiments. 53

4-1 Two iterations of the overall approach. 60

4-2 Different iterations of the approach. Within each iteration, the upper

two plots indicate a counterexample trajectory of the traffic system

that falsifies collision-free behavior under the proposed contracts. The

lower plot illustrates a new contract that guards against the counterex-

ample. 70

12

4-3 The contract for timestep 𝑡 = 4.8𝑠 at iteration 4 for each set of param-

eters. 71

4-4 The log-likelihood for each test case across all iterations. The red ×

marks iterations where the contract terminated with an empty set, and

the green dashed line indicates the chance constraint 𝛼. 71

13

14

List of Tables

3.1 Symbols table. 33

4.1 Extended symbols table. 59

4.2 Rules of the road for highway scenarios. 67

4.3 Parameters used to model driver behaviors for the traffic cars. 69

15

16

Chapter 1

Introduction

The way we use and think about mobility and transportation has changed signif-

icantly in the last years due to many recent developments in autonomous driving.

With the increasing space of potential applications, the required safety certificates

for deployment are becoming increasingly difficult to manage both in terms of com-

putational complexity for simulations and the hours spent on road testing. Moreover,

safety guarantees are not only required for the safe deployment of systems but can

also act as a key stepping stone in gaining customers’ trust in autonomous systems.

To this end, we consider the problem of providing rigorous safety guarantees for au-

tonomous car controllers through formal verification methods with respect to vehicle,

environment, and traffic models. Formal verification can fill the gap of certification by

providing a platform to assess safety with clear assumptions and guarantees. While

simulation and testing are undoubtedly essential tools for deployment of complex

systems, they lack the completeness, and therefore the guarantees, of verification,

potentially missing out on rare and hard-to-characterize events.

Recent studies [36] have indicated that the requirement to demonstrate safety for

an autonomous car is hundreds of millions of miles of testing taking possibly tens of

years to complete. To meet these proof-of-safety demands, testing and simulation,

which provide very detailed insights for specific events, can be supplemented with

verification frameworks, which provide insights for an entire set of events, though

often less detailed. In such a sense, verification provides a way to check over an

17

Figure 1-1: The network shows the Manhattan street grid. We verified a part of
Manhattan consisting of ca. 130 blocks with 180 intersections and 330 straight road
segments (marked black) using a library of 22 verified segments. This underlines the
gain in efficiency of the compositional-based approach compared to that of a direct
naive approach.

infinite number of simulated trajectories as opposed to straightforward case-based

simulation at the cost of reduced model complexity.

Despite its appeal, verification can quickly become computationally intractable.

For any realistic scenario involving a large number of interacting agents, a large

road network, and complex autonomous system implementations, obtaining correct-

ness guarantees becomes prohibitively expensive. Since verification usually requires

reasoning about the entire set of possible outcomes, which is potentially of infinite

cardinality, analytic solutions to verification do not exist, and instead we require ef-

ficient approximation algorithms. Moreover, the verification process typically must

be repeated whenever any part of the autonomous systems is modified, thus heavily

reducing the practicability and reusability of such guarantees.

Current state-of-the-art work, including [3, 25, 45, 47] among others, in verifica-

tion has considered the synthesis of safety guarantees for a variety of autonomous

systems, such as aerial systems and autonomous vehicles. Previous work has either

leaned towards simplifying the system to be verified [25, 47] or towards considering

more conservative, coarse approximations of complex systems [3, 45] to cope with

18

the issue of computational tractability. As a consequence, the question of combining

large-scale safety guarantees with complex control systems has not been adequately

addressed. In this regard, our work aims at closing the research gap between the

vast, mostly independent prior work in verifying large-scale systems and in verify-

ing complex systems by proposing methods to synthesize safety guarantees that are

simultaneously applicable to large-scale and complex systems.

In particular, in this thesis we present a novel framework to concurrently verify

and synthesize compositional safety contracts for autonomous systems that are em-

bedded in probabilistic traffic scenarios within large road networks and consider rules

of the road. By means of generating contracts – instead of verifying the system itself

– we may reuse the obtained safety contract, which constitutes a set of constraints

in the autonomous system’s state space, enabling scalable verification across any au-

tonomous system that implements the safety contract. By means of decomposing the

verification tasks into local tasks – instead of verifying the entire system at once – that

consider particular traffic scenarios and road geometries, we achieve computational

tractability over large domains.

The local verification task and contract synthesis method is based on reachabil-

ity analysis, which computes the safe (collision-free) subset of the state space for

each timestep. Within these local tasks, we verify local road models, such as in-

tersections, and synthesize the contract that allows an autonomous system to safely

traverse the local road model. We then compose guarantees for larger road networks

through appropriate safe entry and exit sets, i.e., assume-guarantee contracts, which

are part of the safety contract. Moreover, we employ falsification to search for rel-

evant traffic counterexamples from the rich probabilistic behavior models of other

traffic participants. These counterexamples are used to populate the local verifica-

tion tasks with traffic. That way, we avoid the need of verifying over the entire set

of possible behaviors and overcome the tractability issues arising from verifying such

a complex system. The falsification method to find traffic counterexamples is based

on a gradient-based trajectory optimization problem with chance constraints. Both

methods, reachability analysis and falsification, are combined in an iterative fash-

19

ion to verify local road models where during each iteration we first find a proposal

contract using reachability analysis and then try to falsify the proposed contract by

searching for a counterexample.

In this sense, we provide safety guarantees for controllers and planners of au-

tonomous systems that can operate under consideration of the safety contract, which

can be readily implemented via state-space constraints. The focus hereby lies on

obtaining safety guarantees for road networks that are known a priori, such that we

can obtain the necessary safety guarantees in an offline procedure before deployment.

Moreover, as we consider a priori known road networks, the probabilistic traffic model

can be validated and augmented using real-world traffic data from the considered road

network to ensure its accuracy. While we do not actively consider perception as part

of the verification procedure, we note that the modular, decomposable approach of

our method can be leveraged to also introduce assume-guarantee contracts between

the control system and the perception system, such that (potentially probabilistic)

safety guarantees for the perception system can be derived independently.

The proposed framework enables a variety of novel capabilities. Using composi-

tionality, we can verify the safety properties over domains, such as the road network

shown in Figure 1-1, previously considered to be too large to be tractable using tradi-

tional verification techniques. We also argue that the framework results in explainable

verification since the found traffic counterexamples from falsification quantify the type

of behavior that the contract can and/or cannot guard against. Moreover, through

probabilistic modelling of traffic agents, we can evaluate the particular behavior of

certain traffic agents in terms of the amount of risk a certain counterexample imposes.

The contract synthesis method itself can account for rules of the road while ensuring

safety. We can therefore evaluate the performance of the system, not only in terms of

safety but also in terms of the desired behavior, and limit the type of behavior that

is allowed through an explainable set of rules.

20

1.1 Contributions

This thesis contributes the following:

1. A safety verification problem formulation that entails providing safety guaran-

tees for a large set of autonomous systems and introduces the notion of safety

contracts as verification guarantee.

2. A contract synthesis procedure based on reachability analysis that considers

rules of the road, local road geometries, road networks, and probabilistic traffic

behavior.

3. A gradient-based falsification approach that enables efficient generation of a

wide variety of probabilistic traffic scenarios with tunable behavior via chance

constraints.

4. Domain-specific methods and implementations to overcome tractability issues,

including efficient methods for reachability analysis and set-based operations.

5. Empirical results demonstrating the broad applicability and practical effective-

ness on real-world inspired traffic scenarios, including simulation results on the

Manhattan road network and highway overtaking maneuvers.

Preliminary versions of these results have appeared in [21, 42].

1.2 Outline of Thesis

This thesis is organized as follows. In Chapter 2, we present related work in safety

verification and discuss the scope and limitation of previous work. In Chapter 3,

we formally introduce the safety verification problem and describe the verification

framework used to verify and synthesize safety contracts. We show how reachability

analysis can be leveraged to synthesize safety contracts in dynamic, known traffic

scenarios and present a compositional approach to compute safety guarantees over

21

large spatial domains. We also present a case study on the Manhattan road net-

work. In Chapter 4, we relax the assumption of known, dynamic traffic scenarios via

falsification. We show how we use a gradient-based trajectory optimization method

to identify probabilistic traffic counterexamples, which can be used to update the

contract in an iterative manner. Empirical results on a highway overtaking scenario

are also presented. In Chapter 5, we conclude with a discussion on the presented

approaches and mention potential directions for future work.

22

Chapter 2

Related Work

Our work leverages and hinges upon prior work in local motion planning, reachability

analysis, formal verification and synthesis, and falsification.

2.1 Local Motion Planning

Methods to compute safe trajectories for autonomous vehicles in dynamic environ-

ments have been proposed in various contexts [50]. Using input space discretization,

motion planning can be performed on a grid with graph algorithms [26, 64]. Sampling-

based methods, such as rapidly exploring random trees [38], sample the state space

for points and aim at generating an optimal time-discretized trajectory from the sam-

pled points. Receding horizon control [24, 59], or model-predictive control, leverages

nonlinear optimization tools to directly optimize a trajectory over a cost map under

consideration of constraints, such as dynamics. This can also be applied for shared-

control of highly automated vehicles [57] where the authors consider the human input

as additional term in the cost function to minimize the deviation from the human

input. These methods work well in practice but usually compute valid and safe trajec-

tories only up to a pre-defined time horizon with no global and long term guarantees.

In this work, we aim to obtain guarantees via safety contracts, which are employed

by the local planner.

Moreover, robust motion planning aims to generate a proposal trajectory while

23

accounting for disturbances, such as uncertainty in the dynamics and the state of the

robot. This yields to approaches such as model predictive control with tubes [46],

where the tubes represent a safety margin around the nominal, desired trajectory.

Other approaches include planning using motion primitives [29] based on Hamilton-

Jacobi reachable sets and a sampling-based planner that can reason about uncer-

tainty [41]. Moreover, the concept of funnels [45, 62], where a library of funnel-based

motion primitives is built up to account for uncertainty in the state, has been shown

to be applied to robust motion planning. In contrast to some of the prior work (such

as [24, 46]), our work explicitly accounts for reachable sets based on the underlying

dynamics of the robot system. Compared to approaches such as [29, 45, 62], where

dynamics are also accounted for through the appropriate reachable sets, our work

aims at building a library of safety constraints, i.e., a safety contract, that can ac-

count for a wide variety of dynamic obstacles while simultaneously being applicable to

a large variety of motion planners. In other words, the safety contract may be imple-

mented by any desired motion planner, either sampling-based or optimization-based

for example.

2.2 Reachability Analysis

A large body of literature has been devoted to the formal analysis of reachability of

systems. For finite systems efficient search mechanisms over the state-transition graph

can be used to check the reachable states, e.g., Clarke et al. consider binary decision

diagrams to this end [15]. For continuous systems, the authors of [9] and [13] propose

to use sampling-based methods to compute reachable sets. In [35], the reachable set

of continuous systems is computed using a combination of Runge-Kutta methods and

affine arithmetic. The reachable sets of hybrid systems have also been extensively

investigated in various contexts [4, 5, 12, 47].

Accurate reachability analysis necessitates the computation of the reachable states

from an (uncountable) set of states, which is computationally intractable in prac-

tice [60]. Therefore, a vast collection of prior work has focused on developing approx-

24

imation algorithms, such as finite abstractions, for the computation of approximate

reachable sets. To this end, an approach to computing overapproximations of reach-

able sets using zonotopes is presented in [2] and implemented as the CORA toolbox.

The authors propose to approximate nonlinear systems polynomial systems and to

account for approximation errors by appropriately inflating the underlying zonotopes.

Taylor flow tubes are used to compute overapproximations of reachable sets in the

work of [11]. Tools such as HyTech [32] and [14] consider only linear dynamics.

In [25, 47] the task of computing reachable sets is cast as Hamilton-Jacobi Partial

Differential Equations (PDEs) and standard tools for solving PDEs are used. Virtu-

ally all of these tools, however, compute over-approximations and cast the generally

(highly) non-linear system dynamics as polynomials or even linear functions, which

results in potentially unbounded error terms. Moreover, they are highly sensitive

to the dimensionality of the input space and suffer to a great extent from the curse

of dimensionality [47]. More recently, the work in [43] considers a sampling-based

approximation method to underapproximation of reachable sets with provable ap-

proximation guarantees.

In this thesis, we consider the use of reachability analysis to verify the safety over

local road models, which is used to synthesize safety contracts as well as guarantees

over larger domains. This way, we avoid the computational tractability issues over

large state space domains while allowing to synthesize contracts and guarantees over

large domains.

2.3 Verification and Synthesis

Applications of reachability analysis range from ensuring the safety of mobile robots

in human environments to flight maneuver verification. In particular, the work in

[10, 23, 27, 52, 58, 67] investigates applications of reachability analysis to verifying

grasping and manipulation tasks. Other applications include aerial robotics [30] and

mobile robotics [44].

Verification has been employed in a variety of other safety-critical domains as well,

25

such as aerospace [7] and automotive [48, 49, 66]. In the automotive field, prior work

has focused on time-bounded behaviors and simple motion primitives rather than

the verification of controlled systems over complex, structured environments. In [1]

and [3], the authors consider the use of reachability analysis for online safe motion

planning in an autonomous vehicle. Accounting for model and sensing uncertainties

through reachability analysis, the proposed method can reason about all possible

future scenarios under consideration.

The contractual approach to verification has been proposed for complex system

designs in many different domains [55] and has found numerous applications in re-

cent verification and synthesis techniques, which exploit compositional approaches

[6, 18, 39, 53] and assume-guarantee contracts [33, 54]. These approaches enable the

separation of the controller design from the verification procedure and enable verifica-

tion over larger, otherwise computationally intractable, domains. Our work is similar

to [39, 40], where a compositional approach to synthesizing contracts is presented for

traffic networks that must adhere to global specifications.

The idea of creating constraints based on a behavioral model may be viewed as

an instance of robust explicit model-predictive control. The approaches in [19, 65]

aim to synthesize controllers that satisfy a high-level task specification while in [20]

the goal is to synthesize simple partitions of the state-space based on reachable sets.

In contrast to our work, the aforementioned approaches assume simple, non-

probabilistic environment behaviors and are limited in the scope of the system and/or

model considered. On the other hand, the contracts considered in this thesis are rep-

resented as simple state-space constraints on the car’s behaviors, which are shown

to be valid for highway-type scenarios, including lane keeping, lane changing, and

merging, as well as city-type scenarios, including various turning maneuvers in inter-

sections. To this end, we leverage compositional and contract-based verification to

simultaneously achieve scalability and computational tractability in the model (large

road networks), the system (control system of car), as well as the considered traffic

scenarios (allowed behaviors of dynamic obstacles).

26

2.4 Falsification

Falsification [9, 13, 51] aims to find counterexamples that violate a given property

and enables the analysis of more complex systems than verification at the cost of

completeness. The problem – as opposed to verification – becomes one of finding

failures, rare events within distributions capturing realistic driving behaviors, which

can be difficult to solve.

Bhatia and Frazzoli propose to use sampling-based algorithms, such as rapidly

exploring random trees, to capture failure events by sampling points until either a

counterexample is found or the search space is exhausted. Counterexample guided

abstraction refinement methods, such as the work presented in [16, 37], are based on

the idea to initially start with an abstract, simple model that may produce counterex-

amples. Through an iterative approach, the model is then refined in subsequent steps

to produce more relevant counterexamples. The authors of [56] propose to use the

cross-entropy method to efficiently guide the sampling of random scenarios to find

relevant counterexamples.

In contrast to sampling-based methods, such as [9, 56], we leverage a gradient-

based probabilistic optimization to falsification of systems involving a large number

of agents in short scenarios with few discrete decisions. This approach allows us

to quickly converge on solutions by optimizing their utility at each iteration step

and thus identify highly-relevant traffic scenarios, i.e., a collection of trajectories of

dynamic obstacles. Moreover, the falsification-based approach to identify relevant

traffic scenarios enables computational tractability since we are not required to verify

the system over the entire domain of possible traffic scenarios. We also note that

– similar to related work – the highly nonlinear nature of the problem prevents a

globally-optimal solution, i.e., conclude that the added certificates are a formal proof

of safety. However, our approach seeks to iteratively find locally-optimal counterex-

amples at each step of the contract-generation process and hence targets important

failure cases that sampling-based approaches may miss.

27

28

Chapter 3

Contract Synthesis with Known,

Dynamic Obstacles

In this chapter1, we define the safety verification problem and present a framework to

concurrently synthesize and verify safety contracts, i.e., a set of state space constraints

for the autonomous system (ego-car). The safety contract is computed using reach-

ability analysis and can be implemented by any control strategy that can account

for state-space constraints, such as receding horizon and sampling-based controllers.

We show how we can synthesize safety contracts for a large variety of local road ge-

ometries and how we can subsequently use these local contracts to synthesize safety

contracts for large road networks. For the sake of simplicity, traffic, i.e., dynamic

obstacles, are assumed to be known. This assumption is further relaxed in Chapter 4.

3.1 Problem Definition

In this section, we introduce the safety verification problem of controllers for au-

tonomous cars. We define models for the ego-car, the road network, traffic, con-

trollers, and safety that form the context of the verification problem. An overview of

1This chapter is based on Lucas Liebenwein, Wilko Schwarting, Cristian-Ioan Vasile, Jonathan
DeCastro, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus. Compositional and contract-
based verification for autonomous driving on road networks. In International Symposium on Robotics
Research. International Foundation of Robotics Research, 2017.

29

the notation used in this chapter is given in Table 3.1.

3.1.1 Ego-car

The ego-car is defined as a dynamical system 𝑉 = (𝒵,ℛ,𝒰 , 𝑓𝑒𝑔𝑜, 𝑔𝑝, 𝑔𝑞) evolving

according to 𝑧𝑘+1 = 𝑓𝑒𝑔𝑜(𝑧𝑘, 𝑢𝑘), where 𝒵 ⊆ R𝑛𝑒𝑔𝑜 is the state space, ℛ ⊂ 𝒵 the

workspace, 𝒰 ⊆ R𝑛𝑢 the control space, 𝒬 ⊂ 𝑆𝐸(2) the configuration space (pose) of

the car, and 𝑧𝑘 the state of the car at time 𝑘. Further, let 𝑓𝑒𝑔𝑜 : 𝒵×𝒰 → 𝒵, 𝑔𝑝 : 𝒵 →

R2, and 𝑔𝑞 : 𝒵 → 𝒬 be the Lipschitz continuous (invertible) dynamics, observation

function, and configuration space submersion, respectively. Then, 𝑝𝑘 = 𝑔𝑝(𝑧𝑘) and

𝑞𝑘 = 𝑔𝑞(𝑧𝑘) denote the location and pose of the car at time 𝑘, respectively. Moreover,

let ℬ(𝑧𝑘) ⊂ 𝒵 be the ego-car’s footprint at time 𝑘, and let

ℬ(𝑍𝑘) =
⋃︁

𝑧𝑘∈𝑍𝑘

ℬ(𝑧𝑘)

denote the ego-car’s footprint for a set of states 𝑍𝑘 ⊆ 𝒵. Finally, let 𝑡𝑘 = ℎ𝑘 denote

the time at 𝑘, where ℎ is the time step.

3.1.2 Road Network

The workspace with its associated rules ℛ contains the roadway of the road network

the car operates in, which is a planar compact connected region, and the rules of the

road associated with the roadway. We assume that ℛ ⊆ 𝒵, i.e., that we can express

the road, which follows naturally, and its rules in terms of state space constraints on

the ego-car. In Chapter 4, we will elaborate in details on rules we consider and how

they may be implemented.

3.1.3 Traffic

The road network associated with the ego-car is also populated by other traffic partic-

ipants, e.g., pedestrians, bikes, and cars. For brevity, we only consider other cars. We

denote the state of car 𝑖 present on the road ℛ at time 𝑘 by 𝑥𝑖𝑘, 𝑖 ∈ {1, . . . , 𝑁(𝑘)},

30

where 𝑁(𝑘) is the number of cars in ℛ at time 𝑘. We consider a traffic model

𝒯 = (𝒱(0), I,O, 𝑆), where 𝒱(0) = {𝑉 𝑖}𝑁(0)
𝑖=1 is the set of vehicles present in ℛ at

initial time 𝑘 = 0, I ⊂ 𝒵 and O ⊂ 𝒵 are sets of states for entering and leaving the

road network, and 𝑆 is a scheduler that generates cars at I and destroys them at O,

see Section 3.5 for an example in the form of a hybrid system. Similar to the ego-car,

we denote by ℬ𝑖(𝑥𝑖𝑘;ℛ) ⊂ 𝒵 the footprint of traffic car 𝑖 at time 𝑘 according to the

rule set ℛ. We note that making the footprint dependent on the rule set allows for

including rules, such as varying safety margins, in the footprints of the traffic cars.

3.1.4 Controllers and Driving Behaviors

The behaviors of all the cars are defined by controllers (feedback or open-loop). For-

mally, a controller for car 𝑖 is a map from all the car states 𝑥𝑘 = [𝑧𝑘, 𝑥
1:𝑁
𝑘] ∈ 𝒳 ⊆ R𝑛 to

a control value 𝑢𝑖𝑘, i.e., 𝐶𝑖 : 𝒳 → 𝒰 such that 𝑥𝑖𝑘+1 = 𝑓𝑖(𝑥
𝑖
𝑘, 𝐶

𝑖(𝑥𝑘)), ∀𝑖 ∈ {1, . . . , 𝑁},

where 𝑓𝑖 defines the dynamics of car 𝑖. Similarly for the ego-car, we let 𝐶 : 𝒳 → 𝒰

denote the controller of the ego-car such that 𝑧𝑘+1 = 𝑓𝑒𝑔𝑜(𝑧𝑘, 𝐶(𝑥𝑘)). 𝒳 hereby de-

notes the joint state-space of all the cars and 𝑥𝑖𝑘 denotes the state of car 𝑖 at time 𝑘,

as before. Throughout the paper, we will tacitly assume that the other cars’ models

are given together with the controllers that define their behavior and are known a

priori for verification.

3.1.5 Safety

The controller for the ego-car is said to be safe at time 𝑘 if it does not collide with

environment obstacles, the road boundary, or other vehicles, and if it respects the

rules of the road ℛ. To this end, let ¬ℛ denote the complement of the road with its

associated rules, and let ℬ𝑖(𝑥𝑖𝑘;ℛ)⊕ℬ(𝑍𝑘) denote the Minkowski sum ("⊕") between

the footprint ℬ𝑖(𝑥𝑖𝑘;ℛ) of car 𝑖 and the ego-car’s footprint ℬ(𝑍𝑘) at time 𝑘. Moreover,

we note that a desired safety margin, i.e., minimum distance between the ego-car and

other vehicles, can be considered to be part of the rules ℛ and thus appropriately

included for in the footprint ℬ𝑖(𝑥𝑖𝑘;ℛ) of the other cars. Then, the ego-car is said to

31

be safe at time 𝑘 for a set 𝑍𝑘 ⊆ 𝒵 of potential states if

inf
𝑧∈𝑍𝑘,𝑜∈𝒪𝑘

‖𝑧 − 𝑜‖ > 0,

where

𝒪𝑘 = ¬ℛ ∪
𝑁⋃︁
𝑖=1

ℬ𝑖(𝑥𝑖𝑘;ℛ)⊕ ℬ(𝑍𝑘)

denotes the set of unsafe states. Similarly, the ego-car is safe on {0, . . . , 𝑇}, 𝑇 ∈

N∪{0,∞}, if it is safe for all times 𝑘 ∈ {0, . . . , 𝑇}. The set of constraints representing

safety are hereby said to be the controller contract 𝒞, which is synthesized during the

verification procedure as explained in Section 3.2.3.

The problem that we address in this paper is checking the safety of executing

a controller 𝐶 on the ego-car with respect to given car, road network, and traffic

models. The controller 𝐶 is hereby represented by the controller contract 𝒞, which

it is supposed to enforce and which is synthesized during the verification procedure.

This not only allows for an abstract representation of specific controllers but also

enables the concurrent verification of a broad class of controllers.

Problem 1 (Controller safety). Given an ego-car model 𝑉 operating in road network

ℛ, using controller 𝐶 that abides by the controller contract 𝒞, under the assumption

of a traffic model 𝒯 , determine whether the ego-car is safe under control of 𝐶 in the

time interval {0, . . . , 𝑇} starting from some subset of the initial states I ⊆ 𝒵.

3.2 Methods

In this section, we propose a verification framework based on the decomposition of the

problem into smaller verification tasks corresponding to topological features of road

networks, mainly road segments and intersections. Verification over entire networks

is achieved by composition of models using synthesized assume-guarantee contracts.

The framework has two steps:

32

Table 3.1: Symbols table.
𝑉 vehicle model
𝒵, 𝒰 , 𝒬 state space, control space, configuration space
ℛ road segment and associated rules
𝑓𝑒𝑔𝑜(·) ego-car dynamics
𝑔𝑝(·), 𝑔𝑞(·) observation, configuration map
𝑧𝑘, 𝑍𝑘 state and set of states, respectively, of the ego-car at time 𝑘
𝑥𝑖𝑘 state of car 𝑖 at time 𝑘
𝑝𝑘, 𝑞𝑘 position and pose, respectively, of the ego-car at time 𝑘
𝑡𝑘, ℎ, 𝑇 time at 𝑘, timestep, final time
ℬ(𝑧𝑘), ℬ(𝑍𝑘) footprint of the ego-car for state 𝑧𝑘 and the set 𝑍𝑘, respectively
ℬ𝑖(𝑥𝑖𝑘;ℛ) footprint of car 𝑖 at state 𝑥𝑖𝑘
𝒪𝑘 combined footprint of static and dynamic obstacles at time 𝑘
𝒱(𝑘), 𝑁(𝑘) set and number of cars, respectively, present in ℛ at time 𝑘
𝒯 , 𝑆 traffic model, traffic scheduler
I,O regions where cars may enter and exit a road model
𝐶𝑖 controller of car 𝑖
𝐹 (𝑡𝑘; 𝑧0) reachable set of the ego-car at time 𝑡𝑘 starting from state 𝑧0
𝐹 (𝑡𝑘;𝑍0) reachable set of the ego-car at time 𝑡𝑘 starting from the set 𝑍0

𝐹 †(𝑡𝑘; 𝑧0) backward reachable set at time 𝑇 − 𝑡𝑘 starting from state 𝑧𝑇
𝐹 †(𝑡𝑘;𝑍0) backward reachable set at time 𝑇 − 𝑡𝑘 starting from the set 𝑍𝑇̃︀𝑍𝑘, ̂︀𝑍𝑘 safe forward reachable of ego-car at time 𝑘̂︀𝑍𝑘 safe backward reachable set of ego-car at time 𝑘
𝐺 = (𝐼, 𝑅) topological graph of the road network
ℳ set of verified road models
𝑚, 𝐴 road model and associated parameters
𝒞, (𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡) controller contract, pair of assume-guarantee contracts

1. local verification and synthesis of the controller contract 𝒞 with additional syn-

thesis of assume-guarantee contracts, and

2. fitting of local models and composition with the assume-guarantee contracts.

In the first part, the parameterized local road models are verified and 𝒞 is syn-

thesized. At the same time, a pair of safe entry and exit states is synthesized for

each model, which forms the associated assume-guarantee contract.These tasks may

be performed off-line in parallel. The collection of local models is called a library.

In the second part, given a road network, locally verified models are fitted to the

roads and intersections of the network. The assume-guarantee contracts are used to

check the composition of the models based on the topology of the road network.

33

Entry set
ℑ1
2

Exit set
𝔒4
2

(a) Four-way intersection

𝑍0 𝑍𝑘−1

𝑍𝑘

𝑍𝐻

𝑍𝑘+1

(b) Forward propagation

෨𝑍𝑘−1

෨𝑍𝑘

෨𝑍𝑘+1

෨𝑍𝐻

෨𝑍0

ℬ1(𝒛𝑘+1
1)

(c) Unsafe set pruning

𝑒𝑥𝑖𝑡 𝑚2, 1, 4
= ෨𝑍𝐻 ∩ 𝔒4

2

(d) Safe exit set

መ𝑍𝐻

መ𝑍𝑘+1

መ𝑍0

መ𝑍𝑘
መ𝑍𝑘−1

𝑒𝑛𝑡𝑟𝑦 𝑚2, 1,4
= መ𝑍0 ∩ ℑ1

2

𝑒𝑥𝑖𝑡 𝑚2, 1, 4
= ෨𝑍𝐻 ∩ 𝔒4

2

(e) Backward propagation

𝑒𝑥𝑖𝑡 𝑚1, 1, 1 ⊆ 𝑒𝑛𝑡𝑟𝑦 𝑚2, 1, 4

Entry set
ℑ1
2

Exit set
𝔒1
1

(f) Composition

Figure 3-1: Consider the libraryℳ = {𝑚1,𝑚2} composed of a straight road 𝑚1 and
a four-way intersection 𝑚2. (a) The four-way intersection 𝑚2 is shown. (b) The entry
set is propagated forward, and, (c), concurrently pruned of unsafe states induced by
other cars. (d) The safe exit set is the intersection of the safe reachable set at time
step 𝐻, the verification horizon, and the exit set. (e) The safe entry set is computed
by backward propagating the safe exit set. (f) Lastly, the composition of the models
using the associated assume-guarantee contracts enables us to certify road networks.

3.2.1 Library of Parameterized Models

The verification process is decomposed into smaller local problems to enable compu-

tational tractability as well as facilitate parallel and distributed solutions. Moreover,

we want to reuse the local computations both within and across road networks. Thus,

we propose constructing a library of parameterized models that can be verified a priori

and used in any road network to decide the safety of a controller. Local verification

of models is valid for any controller that implements the controller contract 𝒞.

We let 2𝒵 denote the power set of 𝒵. Formally, each road element model is a

tuple 𝑚 = (ℛ,I,O, 𝑆, 𝐴), where ℛ is the road with its associated rules as before,

I = {I𝑗}𝑛𝐼
𝑗=1 ⊂ 2𝒵 is the set of 𝑛𝐼 possible entry regions, O = {O𝑗}𝑛𝑂

𝑗=1 ⊂ 2𝒵 is the

34

set of 𝑛𝑂 possible exit regions, 𝑆 is the traffic scheduler that dictates when cars are

generated into ℛ, and 𝐴 is the set of parameters associated with the model. The

parameters of a road model can be related to its geometry, such as the width of

the lanes, the angles of an intersection’s branches, and the pose of the model within

a global road network. Note that the safety guarantees do not always hold for all

possible values of a parameter (e.g. lane width), which implies that the verification

procedure has to be conducted for a (finite) set of potential parameter values. The

library of all available road element models is denoted by ℳ = {𝑚𝑖}𝑖, where upper

indices are used to distinguish between multiple road models if necessary. An example

of a four-way intersection is shown in Figure 3-1(a). Composition of road models is

done such that the exit region of the current model overlaps with the entry region of

the next one, see Figure 3-1(f) for an example.

3.2.2 Reachability Analysis

Consider the dynamics model for the ego-car, 𝑧𝑘+1 = 𝑓𝑒𝑔𝑜(𝑧𝑘, 𝑢), where 𝑧 ∈ 𝒵 is the

state, and 𝑢 ∈ 𝒰 is the control input, as previously described. Then, let 𝑧𝑘(𝑧0, 𝑢(·)) ∈

R𝑛𝑒𝑔𝑜 explicitly denote its state at time 𝑘 when starting from the initial state 𝑧0

evolving under control 𝑢 : R≥0 ↦→ R𝑛𝑢 . Then, the reachable set 𝐹 (𝑡𝑘; 𝑧0) ⊆ 𝒵 at time

𝑡𝑘 under all possible controls 𝑢 ∈ 𝒰 starting from the state 𝑧0 is defined as

𝐹 (𝑡𝑘; 𝑧0) = {𝑧𝑘(𝑧0, 𝑢(·)) | 𝑢(𝑡𝑘′) ∈ 𝒰 ,∀𝑘′ ∈ {0, . . . , 𝑘}}.

Since we are interested in the reachable set from a set of initial conditions, rather

than a fixed initial condition, we define the reachable set 𝐹 (𝑡𝑘;𝑍0) at time 𝑡𝑘 from a

set of initial conditions 𝑍0 ⊆ 𝒵 as follows:

𝐹 (𝑡𝑘;𝑍0) =
⋃︁

𝑧0∈𝑍0

𝐹 (𝑡𝑘; 𝑧0).

We note that in practice we usually cannot compute the reachable set 𝐹 (𝑡𝑘;𝑍0) ex-

actly. Thus, 𝐹 (𝑡𝑘;𝑍0) subsequently refers to an overapproximation of the true reach-

35

able set.

In addition to the forward reachable set 𝐹 (𝑡𝑘;𝑍0), we also consider the back-

ward reachable set for the purpose of safety verification. To this end, let 𝑓 †
𝑒𝑔𝑜 de-

note the inverse dynamics of the ego-car, such that 𝑧𝑘−1 = 𝑓 †
𝑒𝑔𝑜(𝑧𝑘, 𝑢𝑘−1). Then, let

𝑧−𝑘(𝑧𝑇 , 𝑢(·)) ∈ R𝑛𝑒𝑔𝑜 denote the state at time 𝑇 − ℎ𝑘 = 𝑇 − 𝑡𝑘 when starting from

the (final) state 𝑧𝑇 evolving under control 𝑢 : R≥0 ↦→ R𝑛𝑢 . Similar to above, let the

backwards reachable set 𝐹 †(𝑡𝑘; 𝑧𝑇) ⊆ 𝒵 at time 𝑇 − 𝑡𝑘 under all possible controls

𝑢 ∈ 𝒰 starting from the state 𝑧𝑇 be as follows:

𝐹 †(𝑡𝑘; 𝑧𝑇) = {𝑧−𝑘(𝑧𝑇 , 𝑢(·)) | 𝑢(𝑡𝑘′) ∈ 𝒰 ,∀𝑘′ ∈ {𝑘, . . . , 𝑇}}.

Finally, we define the backwards reachable set 𝐹 †(𝑡𝑘;𝑍𝑇) from a set 𝑍𝑇 ⊆ 𝒵 as

𝐹 †(𝑡𝑘;𝑍𝑇) =
⋃︁

𝑧𝑇∈𝑍𝑇

𝐹 †(𝑡𝑘; 𝑧𝑇).

We leverage reachability analysis to compute the set of safe reachable states ̂︀𝑍𝑘

at time 𝑘 as explained below.

3.2.3 Verification of Controller Contracts

Verification of the local road models in the library is based on reachability analysis,

which enables the concurrent synthesis of the controller contract 𝒞 and the assume-

guarantee contracts, which are used to obtain safety guarantees over road networks.

An assume-guarantee contract of a road model 𝑚, traversed from entry region 𝑗 to

exit region 𝑗′, is a pair of safe entry and exit sets (𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′), 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′)), where

𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′) ⊆ I𝑗 ⊂ 𝒵 and 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′) ⊆ O𝑗′ ⊂ 𝒵. The contract is interpreted as

follows: if the system starts in 𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′), then it is guaranteed that the controller

can drive the ego-car safely to 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′) within the exit region O𝑗′ . The assume-

guarantee contract may be inferred from the controller contract 𝒞, as described in

Algorithm 1. The controller contract 𝒞 takes the form of state space constraints,

where 𝒞𝑘 denotes the set of constraints at time 𝑘, see below for more details.

36

Algorithm 1 VerifyRoadModels
Input: 𝑚 = (𝒵,I,O, 𝑆, 𝐴): road model, I𝑗 ∈ I, O𝑗′ ∈O: pair of entry/exit states,
𝑇 : verification horizon
Output: 𝒞: controller contract, 𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′), 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′): pair of safe entry/exit
regions (assume-guarantee contract)

1: ̃︀𝑍0 ← I𝑗

2: {𝑥𝑖0}
𝑁(0)
𝑖=1 ← 𝑆.𝑖𝑛𝑖𝑡()

3: for all 𝑘 ∈ {0, . . . , 𝑇 − 1} do ◁ forward propagation
4: 𝑥𝑖𝑘+1 ← 𝑓𝑖(𝑥

𝑖
𝑘, 𝐶

𝑖(̃︀𝑍𝑘, 𝑥
1:𝑁(𝑘)
𝑘)), ∀𝑖 ∈ {1, . . . , 𝑁(𝑘)}

5: 𝑁(𝑘 + 1)← 𝑆.𝑢𝑝𝑑𝑎𝑡𝑒()

6: 𝑍𝑘+1 ← 𝐹 (ℎ; ̃︀𝑍𝑘)

7: 𝒪𝑘+1 = ¬ℛ ∪
⋃︀𝑁

𝑖=1 ℬ𝑖(𝑥𝑖𝑘+1;ℛ)⊕ ℬ(𝑍𝑘+1)

8: ̃︀𝑍𝑘+1 ← 𝑍𝑘+1 ∖ 𝒪𝑘+1 ◁ enforcing safe behavior
9: ̃︀𝑍𝑘+1 ← ReduceSetComplexity(̃︀𝑍𝑘+1) ◁ simplify the set representation

10: 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′)← ̃︀𝑍𝑇 ∩O𝑗′

11:

12: ̂︀𝑍𝑇 ← 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′)

13: for all 𝑘 ∈ {𝑇, . . . , 1} do ◁ backward propagation
14: ̂︀𝑍𝑘−1 ← 𝐹 †(ℎ; ̂︀𝑍𝑘) ∩ ̃︀𝑍𝑘−1

15: ̂︀𝑍𝑘−1 ← ReduceSetComplexity(̂︀𝑍𝑘−1) ◁ simplify the set representation

16: 𝒞 ← { ̂︀𝑍𝑘}𝑇𝑘=0 ◁ assign the safe reachable sets to the contract
17: 𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′)← ̂︀𝑍0 ∩ I𝑗

18:

19: return 𝒞, 𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′), 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′)

The verification procedure for a road model 𝑚 with given entry and exit regions

is shown in Algorithm 1 and can be considered as a type of reach-avoid problem. The

objective here is to find the controller contract 𝒞 by computing the safe reachable set̂︀𝑍𝑘 for the ego-car at all time steps such that it preserves the rules associated with

ℛ and is collision-free. Concurrently, we are able to synthesize the assume-guarantee

contracts for finding the safe entry/exit pairs. Overall, all entry-exit pairs need to be

verified. The algorithm has two main components.

First, the entry set is propagated forward over the given time horizon 𝑇 , starting

from the initial entry set I𝑗 (line 1). The initial states of the other cars are initialized

by the scheduler using its 𝑖𝑛𝑖𝑡() method (line 2). At each step the other vehicles’ states

37

are propagated using their controllers 𝐶𝑖 (line 4). Next, the scheduler’s 𝑢𝑝𝑑𝑎𝑡𝑒()

method is called (line 5) that spawns and removes vehicles, initializes new vehicles,

and returns the number of vehicles according to the traffic model 𝒯 . Then, the ego-

car’s reachable set 𝑍𝑘+1 is computed (line 6). The unsafe states 𝒪𝑘+1 are the union

over the road complement ¬ℛ and the union of possible footprints ℬ𝑖(𝑥𝑖𝑘+1;ℛ) ⊕

ℬ(𝑍𝑘+1) of each of the other cars with the ego-car (line 7). The unsafe states 𝒪𝑘+1

are pruned from 𝑍𝑘+1 (line 8) to obtain the safe, forward reachable set ̃︀𝑍𝑘+1. Note

that the reachable set 𝑍𝑘+1 is computed over all possible control inputs 𝑢 ∈ 𝒰 , and

only afterwards (line 8) do we prune the set of unsafe states to obtain the safe, forward

reachable set ̃︀𝑍𝑘 at that time step. In other words, we check for all solutions 𝑍𝑘+1

and then prune them accordingly to obtain the possible solutions ̃︀𝑍𝑘+1 considering

the obstacles and the road with its associated rules ℛ. We also perform an additional

step, which is explained in detail in Section 3.4.4, to ensure the set representation

remains computationally tractable (line 9). The safe exit set 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′) is the set

of safe reachable solutions within the exit set O𝑗′ (line 10).

Second, we compute the safe entry set for 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′) ⊂ O𝑗′ . and the controller

contract 𝒞. To this end, we employ backward propagation from the safe exit set

(line 12). The safe exit set is backpropagated via the inverse dynamics of the ego-

car and intersected with the safe forward reachable set ̃︀𝑍𝑘−1 since these are the only

relevant solutions (line 14). The rules of the road ℛ are enforced at all times sincẽ︀𝑍𝑘−1 abides by them. Then, we can infer the controller contract 𝒞 (line 16) and the

safe entry set (line 17) from the safe reachable sets { ̂︀𝑍𝑘}𝑇𝑘=0.

The necessity for the backpropagation step arises from the fact that, although we

can infer the set of initial conditions (I𝑗) of the safe reachable set ̃︀𝑍𝑇 , we cannot infer

the set of safe initial conditions 𝑒𝑛𝑡𝑟𝑦(𝑚, 𝑗, 𝑗′) of the safe exit set 𝑒𝑥𝑖𝑡(𝑚, 𝑗, 𝑗′). We

also require backpropagation to obtain a sound contract 𝒞 since otherwise we are not

guaranteed that the constraint set 𝒞𝑘+1 at time 𝑘+1 is reachable from the constraint

set 𝒞𝑘 at the previous time 𝑘.

A graphic representation of the procedure is shown in Figure 3-1. The forward

propagation procedure (line 6) is shown in 3-1(b), and the pruning step (line 8) is

38

shown in 3-1(c). Once the safe-reachable set at step 𝑇 is computed, it is trimmed

(line 10) to lie within the exit region, see 3-1(d). The second part of the procedure,

the backward propagation (line 12-17) shown in 3-1(e), computes the safe entry set

and the controller contract 𝒞.

Algorithm 2 VerifyFromLibrary
Input: 𝑉 = (𝒵,ℛ,𝒰 , 𝑓𝑒𝑔𝑜, 𝑔𝑝, 𝑔𝑞), ℳ: library of verified parameterized models
Output: Boolean value indicating safety

1: Extract topology graph 𝐺 = (𝐼, 𝑅) of road network ℛ
2: Fit each node 𝜄 ∈ 𝐼 (intersection) to 𝑚𝜄 ∈ℳ with parameters 𝐴𝜄

3: Fit each edge 𝑟 ∈ 𝑅 (road) to 𝑚𝑟 ∈ℳ with parameters 𝐴𝑟

4: for all 𝑟1 = (𝜄1, 𝜄2), 𝑟2 = (𝜄2, 𝜄3) ∈ 𝑅 do
5: if ¬

(︀
𝑒𝑥𝑖𝑡(𝑚𝑟1 , 1, 1) ⊆ 𝑒𝑛𝑡𝑟𝑦(𝑚𝜄2 , 𝑟1, 𝑟2) ∧ 𝑒𝑥𝑖𝑡(𝑚𝜄2 , 𝑟1, 𝑟2) ⊆ 𝑒𝑛𝑡𝑟𝑦(𝑚𝑟2 , 1, 1)

)︀
then

6: return ⊥
7: return ⊤

3.2.4 Road Network Verification

Given a library of verified road modelsℳ, we can verify road networks via composi-

tion using the models’ assume-guarantee contracts. The procedure is summarized in

Algorithm 2. First, we extract the topology graph 𝐺 of the network ℛ (line 1), and

then fit models to all intersections 𝜄 ∈ 𝐼 (line 2) and road segments 𝑟 ∈ 𝑅 (line 3)

corresponding to the graph’s nodes and edges. Finally, we check for each two inci-

dent road segments 𝑟1, 𝑟2 ∈ 𝑅 if: (a) the safe exit set 𝑒𝑥𝑖𝑡(𝑚𝑟1 , 1, 1) of the incoming

road 𝑟1 is included in the safe entry set 𝑒𝑛𝑡𝑟𝑦(𝑚𝜄2 , 𝑟1, 𝑟2) of the common intersection

𝑚𝜄2 , and (b) the safe exit set of the intersection 𝑒𝑥𝑖𝑡(𝑚𝜄2 , 𝑟1, 𝑟2) is included in the

safe entry set 𝑒𝑛𝑡𝑟𝑦(𝑚𝑟2 , 1, 1) of the outgoing road 𝑟2. If all checks pass, then the

network is certified safe. In other words, if the safe set remains non-empty during the

propagation throughout the network, the network is certified safe. In the case that a

(pairwise) composition is deemed unsafe, Algorithm 1 can be run for the composition.

Subsequently, Algorithm 2 can be rerun with the composition as an additional road

model.

39

3.3 Analysis

In this section, we provide results on safety guarantees over paths in the road network

provided that Algorithm 2 returns true.

Let 𝑚𝑖 ∈ ℳ be a local road model and 𝑗, 𝑗′ the indices of a pair of entry and

exit regions of 𝑚𝑖, respectively. We denote by 𝑃 𝑖
𝑗,𝑗′ : 𝑒𝑛𝑡𝑟𝑦(𝑚

𝑖, 𝑗, 𝑗′) → 𝑒𝑥𝑖𝑡(𝑚𝑖, 𝑗, 𝑗′)

the surjective map that propagates the states in the safe entry set to the safe exit

set in model 𝑚𝑖 from 𝑗 to 𝑗′. Let 𝐺 be the topology graph of a road network. Let

𝜄 = (𝜄1, . . . , 𝜄𝑝) be a path in 𝐺, and let 𝑚 = (𝑚𝑟1 ,𝑚𝜄2 ,𝑚𝑟2 , . . . ,𝑚𝑟𝑝−1) denote the

sequence of road and intersection models traversed by 𝜄, where 𝑟𝑖 = (𝜄𝑖, 𝜄𝑖 + 1) ∈ 𝑅.

The propagation map over the path 𝜄 is 𝑃 𝜄 = 𝑃
𝑟𝑝−1

1,1 ∘ 𝑃 𝜄𝑝−1
𝑟𝑝−2,𝑟𝑝−1 ∘ . . . ∘ 𝑃 𝜄2

𝑟1,𝑟2
∘ 𝑃 𝑟1

1,1,

where ∘ denotes a function composition.

Theorem 1. Let 𝑉 = (𝒵,ℛ,𝒰 , 𝑓𝑒𝑔𝑜, 𝑔𝑝, 𝑔𝑞) be an ego-car implementing a controller

𝐶 satisfying controller contract 𝒞 and 𝐺 = (𝐼, 𝑅) the topology graph of road network

ℛ. Let ℳ be a library of road models verified against controller contract 𝒞. If

Algorithm 2 returns true, then for all paths 𝜄 = (𝜄1, . . . , 𝜄𝑝) in 𝐺 the ego-car 𝑉

executing 𝐶 from a state 𝑧0 in the safe entry set 𝑒𝑛𝑡𝑟𝑦(𝑚𝑟1 , 𝑗, 𝑗′) of road 𝑟1 = (𝜄1, 𝜄2)

is safe over 𝜄.

Proof. Let 𝜄 = (𝜄1, . . . , 𝜄𝑝) be a path in 𝐺 and 𝑚 = (𝑚𝑟1 ,𝑚𝜄2 ,𝑚𝑟2 , . . . ,𝑚𝑟𝑝−1) be the

corresponding sequence of road and intersection models traversed by 𝜄. Note that

since 𝑚𝜄𝑖 ,𝑚𝑟𝑖 ∈ℳ, ∀𝑖 ∈ {1, . . . , 𝑝}, it follows that we have 𝑃 𝑟𝑖
1,1(𝑒𝑛𝑡𝑟𝑦(𝑚

𝑟𝑖 , 1, 1)) ̸= ∅

and 𝑃 𝜄𝑖
𝑟𝑖−1,𝑟𝑖

(𝑒𝑛𝑡𝑟𝑦(𝑚𝜄𝑖 , 𝑟𝑖−1, 𝑟𝑖)) ̸= ∅, ∀𝑖 ∈ {1, . . . , 𝑝}. Thus, 𝑃 𝜄 over 𝜄 also maps the

safe start set of 𝑚𝑟1 to a non-empty set. We are guaranteed that for every start state

in 𝑧0 ∈ 𝑒𝑛𝑡𝑟𝑦(𝑚𝑟1 , 1, 1) a safe exit state 𝑃 𝜄(𝑧0) ∈ 𝑒𝑥𝑖𝑡(𝑟𝑝−1, 1, 1) is reached.

The next result shows that if we assume that local road models in ℳ satisfy

a robustness property, we then obtain robustness guarantees over paths in the road

network. Informally, the robustness condition on the local models is a lower bound on

the volume contraction of propagated sets. Larger volumes indicate higher robustness

to perturbation.

40

Corollary 1 (Robustness). Consider the same assumptions as in Theorem 1. If

in addition for all 𝑚𝑖 ∈ ℳ and 𝑗, 𝑗′ there exists 𝑞 > 0 such that for all 𝑆𝑖 ⊆

𝑒𝑛𝑡𝑟𝑦(𝑚𝑖, 𝑗, 𝑗′) it holds that 𝜇(𝐸𝑖) > 𝑞 𝜇(𝑆𝑖) with 𝐸𝑖 = 𝑃 𝑖
𝑗,𝑗′(𝑆

𝑖) ⊆ 𝑒𝑥𝑖𝑡(𝑚𝑖, 𝑗, 𝑗′),

then 𝜇(𝑃 𝜄(𝑍0)) > 𝑞2(𝑝−1) 𝜇(𝑍0), where 𝜄 = (𝜄1, . . . , 𝜄𝑝), 𝑍0 = 𝑒𝑛𝑡𝑟𝑦(𝑚𝑟1 , 1, 1), and 𝜇 is

the Lebesgue measure.

Proof. Let 𝜄 = (𝜄1, . . . , 𝜄𝑝) be a path in 𝐺 and 𝑃 𝜄 its propagation map. The robustness

property of the local models implies that 𝜇(𝑃 𝜄(𝑍0)) = 𝜇(𝑃
𝑟𝑝−1

1,1 (𝑃
𝜄𝑝−1
𝑟𝑝−2,𝑟𝑝−1(𝑃

𝜄′(𝑍0)))) ≥

𝑞2𝜇(𝑃 𝜄′(𝑍0)), where path 𝜄′ = (𝜄1, . . . , 𝜄𝑝−1). By induction, we obtain the desired

bound 𝜇(𝑃 𝜄(𝑍0)) > 𝑞2(𝑝−1) 𝜇(𝑍0).

3.4 Implementation

In the following, we introduce the tools for reachability analysis and set operations.

Relevant details for the implementation of Algorithm 1 are mentioned as well.

3.4.1 Reachability Tool

We employ CORA [2] to compute an overapproximation 𝐹 (𝑡𝑘; ·) ⊆ 𝒵 of the reachable

set for each time 𝑘 (line 6 of Algorithm 1). CORA is a reachability tool for linear,

nonlinear, and hybrid dynamical systems. Starting from some set ̃︀𝑍𝑘, represented as

zonotope, it computes the reachable set 𝑍𝑘+1 at time 𝑘+1 by solving the underlying

differential equation for the midpoint and the generators that describe the zonotope,

see [2] for more details. Subsequently, 𝑍𝑘+1 is appropriately inflated to account for

the variable control input 𝑢 ∈ 𝒰 . Nonlinear systems, such as the dynamics model

used in our experiments in Section 3.5, are abstracted to polynomial systems and the

abstraction error is accounted for through an additional inflation of 𝑍𝑘+1 to obtain

an overapproximation.

41

3.4.2 Set Representation

The road segments ℛ and the collision constraints 𝒪 are described via polytopes.

Since polytopes, as opposed to zonotopes, are closed under intersection, they can be

used to prune unsafe solutions from the reachable set. We use the MPT toolbox [34]

for polytope operations. To be able to convert sets back between zonotope (for reach-

ability) and polytope (for other purposes) representation, we use CORA to compute

an overapproximation, i.e., an encompassing convex hull of the polytope. Note that

non-convex regions are stored as an array of convex regions. Thus, any error caused

by the conversion can be neglected.

3.4.3 Set Pruning

As expressed in Algorithm 1, we check for unsafe states and prune solutions that

are in collision with either road boundaries or other cars, which generally yields non-

convex sets (line 8). These operations are performed using polytopic representations.

Note that any non-convex safe reachable set

̃︀𝑍𝑘 =

𝐿𝑘⋃︁
ℓ=1

̃︀𝑍ℓ
𝑘

is segmented into 𝐿𝑘 convex regions ̃︀𝑍ℓ
𝑘 and stored accordingly. This is crucial as

CORA requires convex input sets. The next reachable set is then computed as

𝑍𝑘+1 =

𝐿𝑘⋃︁
ℓ=1

𝐹 (ℎ; ̃︀𝑍ℓ
𝑘)

applying CORA separately to each convex region ̃︀𝑍ℓ
𝑘, see Figure 3-4 for an example.

3.4.4 Reduction of Complexity

Representing sets as an array of convex sets, however, leads to an exponential growth

in the number of convex segments 𝐿𝑘, i.e., in the cardinality
⃒⃒⃒ ̃︀𝑍𝑘

⃒⃒⃒
, because:

42

Algorithm 3 ReduceSetComplexity

Input: ̃︀𝑍𝑘 =
⋃︀𝐿𝑘

ℓ=1
̃︀𝑍ℓ
𝑘: an array of convex sets

Output: ̃︀𝑍 ′
𝑘: an array of convex sets such that

⃒⃒⃒ ̃︀𝑍 ′
𝑘

⃒⃒⃒
≪

⃒⃒⃒ ̃︀𝑍𝑘

⃒⃒⃒
1: 𝐿𝑘 ←

⃒⃒⃒ ̃︀𝑍𝑘

⃒⃒⃒
2: 𝜇𝑚𝑎𝑥 ← maxℓ∈{0,...,𝐿𝑘} 𝜇(

̃︀𝑍ℓ
𝑘) ◁ store maximum volume from the array

3: ̃︀𝑍 ′
𝑘 ← ∅ ◁ initialize the new array

4: for all ℓ ∈ {1, . . . , 𝐿𝑘} do
5: if 𝜇(̃︀𝑍ℓ

𝑘) ≥ 𝜀𝜇𝑚𝑎𝑥 then ◁ only consider large sets, where 𝜀≪ 1

6: ̃︀𝑍 ′
𝑘 ← { ̃︀𝑍𝑘′ , ̃︀𝑍ℓ

𝑘} ◁ append the convex set to the new array

7: ̃︀𝑍 ′
𝑘 ← RemoveOverlaps(̃︀𝑍 ′

𝑘) ◁ remove overlapping sets
8: return ̃︀𝑍 ′

𝑘

1. each pruning operation 𝑍ℓ
𝑘 ∖ 𝒪𝑘 can lead to a split into more convex regions,

and

2. the reachability tool splits large partial sets ̃︀𝑍ℓ
𝑘 into further subregions to min-

imize the error associated with the underlying approximation procedure.

Exponential growth in 𝐿𝑘 will inevitably yield exponential growth in runtime as we

must compute the reachable set individually for each of the 𝐿𝑘 subsets. Thus, this

calls for an efficient and effective method to reduce the cardinality of ̃︀𝑍𝑘 in order for

the verification procedure to be computationally tractable.

The method to reduce the cardinality of ̃︀𝑍𝑘 is shown in Algorithm 3 and is called

from Algorithm 1, Lines 9 and 15 during the verification procedure at each time 𝑘.

In particular, Algorithm 3 is based on two key insights:

1. due to the constraint checks during each time 𝑘, many subsets ̃︀𝑍ℓ
𝑘 are reduced

to a negligible size, e.g. subsets that overlap the roadway, i.e., 𝑍ℓ
𝑘 ∩ ¬ℛ ≠ ∅;

2. neighboring subsets ̃︀𝑍ℓ
𝑘, ̃︀𝑍ℓ′

𝑘 that will be propagated separately are likely to

overlap at time 𝑘 + 1, i.e., ̃︀𝑍𝑘+1,ℓ ∩ ̃︀𝑍𝑘+1,ℓ′ ̸= ∅.

We leverage these insights in Algorithm 3 as follows. First, we compute the

maximum volume among all convex subsets ̃︀𝑍ℓ
𝑘, which we use to prune convex subsets

43

Algorithm 4 RemoveOverlaps

Input: 𝑍 =
⋃︀𝐿

ℓ=1 𝑍
ℓ: an array of convex sets

Output: 𝑍 ′: an array of convex sets such that |𝑍 ′| ≪ |𝑍|

1: 𝐿← |𝑍|
2: 𝑍 ′ ← ∅ ◁ initialize the new array
3: if 𝐿 = 1 then ◁ no sets can be removed in this case
4: 𝑍 ′ ← 𝑍

5: else if 𝐿 = 2 then
6: if 𝑍1 ⊆ 𝑍2 then ◁ check if one set is a subset of the other
7: 𝑍 ′ ← 𝑍2

8: else if 𝑍2 ⊆ 𝑍1 then
9: 𝑍 ′ ← 𝑍1

10: else
11: 𝑍 ′ ← 𝑍

12: else ◁ run the algorithm recursively on smaller sets
13: 𝑍 ′′ ← RemoveOverlaps({𝑍1, . . . , 𝑍⌈𝐿/2⌉})
14: 𝑍 ′′′ ← RemoveOverlaps({𝑍⌈𝐿/2⌉+1, . . . , 𝑍𝐿})
15: 𝑍 ′ ← {𝑍 ′′, 𝑍 ′′′} ◁ consolidate the results

16: return ̃︀𝑍 ′
𝑘

that have significantly smaller volume than the largest one (lines 4-6). Since the

neglected sets have very small volume, the impact on the overall reachable set is

insignificant. In the second step, we remove overlapping subsets using a divide and

conquer approach (line 7).

The divide and conquer approach is shown in detail in Algorithm 4. In particular,

Algorithm 4 is called recursively on subsets of smaller cardinality (lines 13-15). The

base case is a simple pairwise check, whether one of the two convex sets is a subset

of the other (lines 3-11). This allows to remove redundant sets form the array with a

runtime of 𝒪(𝐿𝑘 log𝐿𝑘), where 𝐿𝑘 denotes the cardinality of ̃︀𝑍𝑘 at time 𝑘. Moreover,

we note that a pairwise check on the entire array, which would run in 𝒪(𝐿2
𝑘), is

actually quite unfeasible in practical settings, thus elicits the use of the divide and

conquer approach.

Our empirical results show that the runtime can be significantly reduced (up to

99%) when Algorithm 3 is applied at the end of each time step during forward and

44

backward propagation. Finally, we note that the runtime is dependent on the number

of vehicles since each additional obstacle increases the complexity of 𝒪𝑘. Empirically,

we found that up to 5-7 vehicles can be added before noticing significant increases in

the runtime.

3.5 Results

In this section, we will instantiate the verification framework to verify a specific

receding horizon controller, also referred to as model predictive controller (MPC),

that implements the controller contract 𝒞. In the following, we specify the dynamic

motion model, the vehicle’s dynamic limitations, the collision constraints from other

vehicles, and the drivable space constraints. The constraints constitute the rules of

the road ℛ. At the end of the section, the Manhattan road library and traffic model,

which were verified in the experiments, together with the results are presented. Recall

that the Minkowski sum is denoted by ⊕.

3.5.1 Dynamic Motion Model and Dynamic Constraints

We follow the nonlinear MPC formulation in [57] and employ a car model with a

fixed rear wheel and a steerable front wheel with state 𝑧 and controls 𝑢. At time 𝑘,

we denote the state of the ego-vehicle, typically position 𝑝𝑘 = [𝑥𝑘, 𝑦𝑘] ∈ R2, linear

velocity 𝑣𝑘, orientation 𝜃𝑘, and steering angle 𝛿𝑘, by 𝑧𝑘 = [𝑝𝑘, 𝜃𝑘, 𝛿𝑘, 𝑣𝑘] ∈ 𝒵 ⊆ R5, and

the configuration by 𝑞𝑘 = [𝑝𝑘, 𝜃𝑘] ∈ 𝒬 ⊆ 𝑆𝐸(2). Its control input, typically steering

velocity 𝛿𝑘 and acceleration 𝑎𝑘, is labeled 𝑢𝑘 = [𝑢𝛿𝑘, 𝑢
𝑎
𝑘] ∈ 𝒰 ⊂ R2. The rear-wheel

driven vehicle with inter-axle distance 𝐿 and continuous kinematic model

𝑧̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥̇

𝑦̇

𝜃

𝛿̇

𝑣̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣 cos(𝜃)

𝑣 sin(𝜃)

𝑣
𝐿
tan(𝛿)

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑢𝛿

𝑢𝑎

⎤⎦
⏟ ⏞

𝑢

, (3.1)

45

is described by a discrete time model by integration

𝑧𝑘+1 = 𝑧𝑘 +

∫︁ (𝑘+1)ℎ

𝑘ℎ

𝑧̇ d𝑡 = 𝑓(𝑧𝑘, 𝑢𝑘),

where ℎ is the sampling period.

We limit the steering angle, |𝛿| ≤ 𝛿max, steering speed, |𝑢𝛿| ≤ 𝛿̇max, longitudinal

speed, |𝑣| ≤ 𝑣max, breaking and accelerations, 𝑎min ≤ 𝑢𝑎 ≤ 𝑎max, such that they

conform to the dynamical limitations and the rules of the road. The yaw-rate is

limited to |𝜃| ≤ 𝜃max allowing to neglect slip. The modification is in line with our main

goal: driver safety. While our choice of motion model considers a more conservative

yaw-rate constraint, the verification framework allows for straight-forward integration

of more advanced motion models including slip and load-transfers. Uncertainty in the

dynamical model may be accounted for through proper enlargement of the reachable

set.

3.5.2 Other Vehicles

In the following, we will derive the representation of the safety constraints with respect

to the other vehicles. To ensure real-time operation, motion planners frequently

approximate their own or other cars’ footprint ℬ𝑖(𝑥𝑖𝑘;ℛ) by simpler geometries such as

rotation invariant bounding boxes, enclosing ellipses, or polygons. For the reachability

analysis, we approximate the shape of other vehicles by a polygon, enclosing the

ellipse used by the MPC of [57]. Note that accounting for the ego-car’s shape in the

reachable set can become intractable due to the non-convex, disjoint nature of the set.

We propose an approach where we instead compute the Minkowski sum of the other

vehicle’s polygon and the ego-car’s rectangular shape for each possible difference in

configuration Δ𝑞𝑖𝑘 = 𝑞𝑘 − 𝑞𝑖𝑘 to form a single representation of the collision region

C𝑖
𝑘(𝑧𝑘) = ℬ𝑖(𝑥𝑖𝑘;ℛ)⊕ ℬ(𝑧𝑘) ⊂ R2.

46

(a) Car-collision configurations (b) Drivable space

Figure 3-2: (a) The exact Minkowski swept volume between the ego-car and another
vehicle, which represents configurations in collision, is shown. (b) Drivable space
in a four-way intersection left-turn scenario obtained by taking the Minkowski sum
between the rectangular ego-car and the road over Δ𝑞, i.e., D(𝒵). This is used to
trim the admissible state space. Because of symmetry and for brevity, 𝜃 is only
shown for [0, 𝜋]. Approximations to 10 𝜃-slices are used in the implementation to
reduce computational complexity.

The resulting volume C𝑖
𝑘(𝒵) ⊂ 𝒬 can be represented as a single, invariant shape

in the Δ𝑞-space, where Δ𝑞 = 𝑞𝑖 − 𝑞, see Figure 3-2(a). This volume is translated

and rotated according to each of the other vehicles’ poses 𝑞𝑖𝑘 to obtain the actual

constraint in the configuration space of the ego-car. To reduce the computational

complexity in the implementation, a coarser overapproximation compared to the one

shown in Figure 3-2(a) is chosen.

3.5.3 Drivable Space

We take a similar approach to obtain the drivable space, where we compute the

Minkowski sum between the ego-car’s footprint and the non-road surface over all

configurations 𝑞 of the ego-car. To this end, let ℛ′ denote the road surface of the

considered road segment ℛ. The complement of the aforementioned Minkowski sum

constitutes the drivable space D(𝑧), i.e.,

D(𝑧) = ¬ (¬ℛ′ ⊕ ℬ(𝑧)) ⊂ R2.

47

The set D(𝑧) can then be lifted into a configuration volume D(𝒵) ⊆ 𝒬 containing

the allowed ego-configurations, see Figure 3-2(b). An underapproximation with fewer

𝜃-slices is used in the implementation to reduce the computational effort.

3.5.4 Rules of the Road

As previously described, the road segment ℛ contains the drivable space as well as

rules associated with the road segment. Moreover, we assumed that ℛ ⊆ 𝒵, i.e., we

can express the resulting rules as state space constraints. Below, we summarize the

rules we consider:

∙ road Boundaries: 𝑔𝑞(̃︀𝑍𝑘) ⊆ D(𝒵), ∀𝑘,

∙ safety (obstacle avoidance): 𝒪𝑘 ∩ ̃︀𝑍𝑘 = ∅, ∀𝑘,

∙ speed limit (traffic rules): |𝑣| ≤ 𝑣max,

∙ dynamic limits: |𝛿| ≤ 𝛿max, |𝑢𝛿| ≤ 𝛿̇max, 𝑎min ≤ 𝑢𝑎 ≤ 𝑎max.

Note that all of these rules are expressed in terms of state space constraints as desired.

In Section 4.2 we also consider a larger set of rules.

3.5.5 Admissible Configurations

The above constraints, i.e., the traffic cars (Section 3.5.2), the drivable space (Sec-

tion 3.5.3), and the rules of the road (Section 3.5.4), are combined into a unified

state space representation that can be used to prune the reachable set. Note that

the representation is depended on the time 𝑘 since the traffic cars are dynamic obsta-

cles. To this end, we denote by A𝑘 ⊂ 𝒬 the overall admissible configuration volume

that is obtained by subtracting the other vehicles’ swept volumes from the drivable

configuration volume at time 𝑘, i.e.,

A𝑘 = D(𝒵)
⃥︁ ⋃︁

𝑖∈{1,...,𝑁(𝑘)}

C𝑖
𝑘(𝒵),

48

10

Figure 3-3: The dynamic obstacles (black) and the drivable space (grey) are shown
for time 𝑘 on the left. Set subtraction yields the admissible configuration volume A𝑘

(right).

see Figure 3-3. After lifting the admissible configuration volume into the state space

𝒵, we now have the unsafe states 𝒪𝑘 = 𝑔−1
𝑞 (¬A𝑘) in a simple form. This can be

further augmented through simple state space constraints to account for the speed

limit and dynamic limits mentioned in Section 3.5.4. This representation enables us

to efficiently compute the collision constraints once and to enforce them by simply

applying a set difference operation to the forward propagated state set 𝑍𝑘 at each

time 𝑘, as shown in Algorithm 1, Line 8.

3.5.6 Road Library and Network

We showcase the framework for a Manhattan-style library consisting of 17 intersec-

tions and 5 straight road segments. Roads can have one or more lanes and incoming

roads into an intersection may be tilted with respect to each other, see Figure 3-6 for

a selection of verified models. The library is used to verify the network shown in Fig-

ure 1-1, which consists of ca. 130 blocks in Mid-Manhattan with ca. 180 intersections

and ca. 330 straight road segments.

3.5.7 Traffic Model

We describe other traffic participants as a hybrid system, i.e., a set of traffic flows.

Each traffic flow is specified by a predefined path, including possible lane changes,

connecting regions for entering (I𝑗) and leaving (O𝑗′) road model 𝑚, and a velocity

profile, which together form a trajectory. The traffic scheduler 𝑆 spawns vehicles at

49

some region I𝑗 with a fixed frequency (0.1𝑠−1 to 0.4𝑠−1) 2 and removes them once

they reach O𝑗′ . Trajectories are defined as arc-length parameterized, continuously

differentiable clothoid spline paths and velocity profiles generated by cubic Hermite

spline interpolation. For simplicity, we restrict the class of controllers associated with

the other traffic cars to open-loop. In Chapter 4, we extend the traffic model to

consider probabilistic behaviors that are synthesized using a falsification approach.

3.5.8 Experiments

The proposed procedure was successfully applied to the aforementioned library, in-

cluding the four-way intersection 𝑚 in Figure 3-4 where the verified left-turn maneu-

ver is shown. The considered time horizon is 6.0𝑠 with a discrete timestep ℎ = 0.05𝑠

resulting in 120 iterations. In the shown example there are two streams of cars occu-

pying the intersection, both of which the ego-car avoids. When the second car crosses

the intersection all states in collision are pruned causing the contract 𝒞 to become

disjoint (𝑡 = 3.6𝑠, 𝑡 = 4.6𝑠). However, as the ego-car controller has to abide by the

contract 𝒞 safety remains verified. Upon the exit of the second car, the safe reachable

set is expanding again reflecting the fact that the intersection has become available

(𝑡 = 5.8𝑠).

As visible from Figure 3-4 the ego-car reaches the entire exit set, i.e., 𝑒𝑥𝑖𝑡(𝑚, 1, 4) =̃︀𝑍𝑇 ∩O4 = O4. Next, the safe entry set 𝑒𝑛𝑡𝑟𝑦(𝑚, 1, 4) is computed by means of back-

ward propagation, see Algorithm 1 for details. The contract 𝒞 is also updated during

that procedure. The results of the backward propagation are shown in Figure 3-5.

The remaining library was verified analogously. Note that for intersections, where

there are multiple entry and exit regions, all combinations must be tested in order

for the model to be deemed safe. This results in a total of 83 experiments for the

22 road models considered. In Figure 3-6, a selection of models with various geome-

tries is shown together with the reachable set and traffic for some time step of the

verification. Consequently, the library was matched with the topology graph of Mid-

Manhattan, see Figure 1-1, and the compositions were tested for safety according to
2This range covers a large variety of situations, from occasional vehicles to dense car streams.

50

(a) 𝑡 = 0.3𝑠 (b) 𝑡 = 0.8𝑠 (c) 𝑡 = 2.1𝑠

(d) 𝑡 = 3.6𝑠 (e) 𝑡 = 4.6𝑠 (f) 𝑡 = 5.8𝑠

Figure 3-4: The forward propagation of the reachable set is shown for a left turning
maneuver. Blue sets indicate the safely reachable configuration set 𝑔𝑞(̃︀𝑍𝑘) (top row),
and the position set 𝑔𝑝(̃︀𝑍𝑘) (bottom row) of the ego-car for various times 𝑘. Black
sets mark the swept volume C𝑖

𝑘(𝒵) (top row) and the footprint ℬ𝑖(𝑥𝑖𝑘;ℛ) (bottom
row) of other traffic participants. The entry and exit sets are shown in green and red,
respectively. Note how the ego-car maintains a safe distance to the other cars and
the road boundaries at all times.

Algorithm 2. All compositions have been deemed safe. Henceforth, any car abiding

by the controller contract and the assume-guarantee contracts can safely transition

through the network under the assumption of the used traffic model.

In Figure 3-7, average computation times are shown for one iteration. We observe

that the largest cost comes from the reachability analysis itself. We also observe large

variations in the computation times arising from the varying level of complexity,

51

Figure 3-5: Backward propagation on the four-way intersection 𝑚 for various times
𝑘. At 𝑡 = 6.0𝑠, we start out at ̂︀𝑍𝑇 = 𝑒𝑥𝑖𝑡(𝑚, 1, 4) = O4 and compute the back-
ward reachable set ̂︀𝑍𝑘 (marked blue) for each time 𝑘 to obtain the safe entry set
𝑒𝑛𝑡𝑟𝑦(𝑚, 1, 4).

i.e., level of fragmentation of the reachable sets. The backward propagation shows

a significantly higher computational demand due to the generally more fragmented

sets caused by the computationally more intensive constraints. We conducted our

experiments on an Intel Xeon E5-2680 2.8GHz 16 Core CPU with each experiment

running on a separate core. On average one experiment took 21 hours.

52

t = 2.55s t = 6.00s t = 1.25s t = 4.35s

t = 4.55s t = 1.00s t = 4.00s t = 4.50s

t = 5.40s t = 2.22s t = 3.85s t = 3.55s

Figure 3-6: A selection of verified road models, comprised of various intersections
and straight roads, is shown together with the reachable set (blue) and other traffic
participants (black) at the indicated timestep. The initial and final set are marked
green and red, respectively.

Forward propagation Backward propagation

Reachability Road Other cars Reduce Reachability Constraints Reduce
0

100

200

300

400

500

C
om

pu
ta

tio
n

tim
e

[s
]

Figure 3-7: The box plot indicates computation times for various parts of one iteration
with a fixed timestep of ℎ = 0.05𝑠 averaged over all conducted experiments.

53

54

Chapter 4

Contract Synthesis with

Counterexample-Guided Obstacles

In this chapter1, we relax the assumption of known, dynamic obstacles and consider

the problem of finding more complex traffic scenarios through counterexample-guided

search of traffic scenario that would lead to an unsafe behavior, i.e., we solve a fal-

sification problem to search for relevant traffic scenarios. Moreover, we present a

method to select a convex subset of the contract to ensure that the contract can be

efficiently implemented by an online motion planer (which usually requires convexity

of the problem).

4.1 Problem Definition

In this section, we introduce background and formally state the problem of computing

contracts for driving scenarios. We give an overview of the notation in this chapter

in Table 4.1. For previously introduced notation, please refer to Table 3.1.

1This chapter is based on Jonathan A DeCastro*, Lucas Liebenwein*, Cristian-Ioan Vasile, Russ
Tedrake, Sertac Karaman, and Daniela Rus. Counterexample-guided safety contracts for autonomous
driving. In International Workshop on the Algorithmic Foundations of Robotics (submitted), 2018.

55

4.1.1 Stochastic Models of the Traffic System

We start with uncertain continuous-time parameterized models of the form

𝑥̇ = 𝑓𝜌(𝑥, 𝑢, 𝑤), (4.1)

where 𝑥 ∈ 𝒳 ⊆ R𝑛 are states, 𝑢 ∈ 𝒰 ⊂ R𝑛𝑢 are control inputs, 𝑤 ∈ R𝑑 is a Gaussian-

distributed disturbance vector, 𝑤 ∼ 𝒩 (0,Σ𝜌), where Σ𝜌 is positive definite, and 𝜌 ∈ 𝐴

are fixed model parameters. Our system model 𝑓𝜌(·) is assumed to be 𝐶1 continuous,

and the sets 𝒳 and 𝒰 to be compact. Compared to the previous chapter, we note

that we explicitly consider uncertainty in the dynamics of the ego-car and the traffic

participants. We work from a decomposition of our system model as a coupling of 𝑁

closed-loop parameterized traffic vehicle models, plus one additional system capturing

the physics model for the ego-car:

𝑥̇ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑧̇

𝑥̇1

...

𝑥̇𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓𝑒𝑔𝑜(𝑧, 𝑢)

𝑓1,𝜌1(𝑥,𝑤
1)

...

𝑓𝑁,𝜌𝑁 (𝑥,𝑤
𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.2)

Here, we decompose 𝑥 as 𝑥𝑖 ∈ 𝒳 𝑖 ⊆ R𝑛𝑖,𝜌𝑖 , 𝑤 as 𝑤𝑖 ∈ R𝑑𝑖,𝜌𝑖 , 𝑤𝑖 ∼ 𝒩 (0,Σ𝑖
𝜌𝑖
),

𝑖 = 1, . . . , 𝑁 , as representing an uncontrollable perturbation for each traffic vehicle

𝑖, explaining the uncertainties in how individual drivers behave. We dedicate 𝑢 as

being the driving commands for the ego-car, whose state is 𝑧 ∈ R𝑛𝑒𝑔𝑜 as before.

Given a discretization 𝑘 = {0, . . . , 𝑇}, we define a trajectory as the sequence of

{𝑥𝑘, 𝑢𝑘, 𝑤𝑘}𝑇𝑘=0, and denote 𝑝(𝑤0, . . . , 𝑤𝑇) as the joint probability density function

over the disturbances {𝑤0, . . . , 𝑤𝑇}.

Note that the above disturbance model satisfies many learning-based structures

in the literature. For instance, to implement the model of [8], each vehicle’s behavior

model would take on a feedback form involving a nonlinear function of state and an

additive Gaussian-distributed stochastic term, which is a special case of (4.1). The

parameter 𝜌 may characterize particular styles of driving behaviors, for instance the

56

spectrum describing average driving to aggressive driving. We will illustrate this point

further in Section 4.3.

4.1.2 Problem Formulation

Let a scenario be defined as a tuple 𝒮 = (ℛ, 𝐴, I,O) consisting of a specification of

a road in R2 and its ruleset (a Boolean formula in states) ℛ, a fixed set of model

parameters 𝐴, and a set of possible initial conditions for each car I ⊆ 𝒳 and a final set

for the ego-car O ⊆ 𝒵. This is similar to the road model 𝑚, defined in Section 3.2.1,

but takes slightly different parameters.

Let 𝜙 be a safety condition, a Boolean formula

𝜙 := 𝜇 | ¬𝜇 | 𝜙 ∧ 𝜓 | 𝜙 ∨ 𝜓,

denoting functions of states that describe the conditions for safety of the vehicle.

𝜙 can represent, for instance, collisions between cars, departing a lane, or breaking

certain rules or liability bounds. We further define 𝜓 : R𝑛 → R to be a quantitative

measure on the state space for the entire traffic system and say that 𝑥 ∈ R𝑛 satisfies

𝜙, i.e., 𝑥 |= 𝜙, if and only if 𝜓(𝑥) > 0. Otherwise, the specification is falsified, i.e.,

𝑥 ̸|= 𝜙.

Our goal is, for a given scenario 𝒮 and safety condition 𝜙, to find a set of coun-

terexamples to 𝜙 as bounded-time trajectories for all of the traffic participants. For

each counterexample, we then seek a (controller) contract 𝒞 ⊂ 𝒵 that can be applied

as a rule for the ego-car to follow in order to guard against the counterexample and

thereby locally satisfy 𝜙. We impose the following requirements:

1. 𝒞 yields certain constraints on the ego-car’s trajectories that prevent violating

a given ruleset (e.g. rules of the road),

2. 𝒞 yields additional constraints on the ego-car’s trajectories that prevent viola-

tion of 𝜙 with respect to the counterexamples associated with 𝒞,

3. 𝒞 generalizes to protect the ego-car against a continuum of possible traffic vehicle

57

behaviors under 𝑤𝑖, in addition to those in the finite set of counterexamples,

and

4. the counterexamples associated with 𝒞 satisfy a chance constraint describing

reasonable driver behaviors, i.e., 𝑝(𝑤1, . . . , 𝑤𝑇) ≥ 𝛼𝑇 for some 𝛼 > 0.

If a particular counterexample satisfies such a chance constraint, then we know that

it is reasonably well-explained by the underlying behavior model of actual driver

behaviors. On the other hand, if this check fails, then the counterexample can be

considered to be “uncanny” behavior that does not resemble true driving behaviors

and the ego-car needs not have a contract. Contracts with different road rules can be

compared to examine the affordances or compromises to safety.

For the sake of simplicity of the contracts as well as computational efficiency, the

approach in this paper seeks to attain a convex contract representation that asserts,

under the assumptions of the scenario 𝒮, the ego-car is guaranteed to remain safe

with respect to a finite, but diverse, set of counterexamples associated with 𝒞.

Compared to Chapter 3, in this chapter we focus on generating contracts that are

applicable to a wide range of traffic behaviors – as opposed to a fixed, predetermined

traffic scenario. Moreover, the contract can be readily implemented by any real-

time motion planner or controller since we additional consider a method to convexify

the proposed contract, which enables significant speed-ups during deployment – as

opposed to a non-convex, more general representation.

4.2 Methods

Contracts are created by an alternation between falsification and reachability under

the scenario model (4.2).

4.2.1 Overview

The overall approach is as shown in Algorithm 5. Starting with a set of initial con-

tracts that enforce a ruleset, the falsification step (GenerateCounterexamples)

58

Table 4.1: Extended symbols table.
𝒳 joint state-space
𝒳 𝑖 state-space of car 𝑖
𝜌 dynamics parameters
𝑓𝜌(·) joint state-space, parameterized uncertain dynamics model
𝑥 joint state of ego-car and traffic cars
𝑤 joint Gaussian distributed disturbance vector
Σ𝜌 parameterized Gaussian covariance matrix
𝑝(𝑤0, . . . , 𝑤𝑇) joint probability density function for all times
𝒮 scenario tuple
𝜙 Boolean safety condition
𝜓(·) quantitative safety measure
𝑢̄, 𝑤̄, 𝑥̄ time-indexed control, disturbance, and state sequence, respectively
𝐹𝑠𝑎𝑓𝑒(𝑡𝑘;𝑍0) safe forward reachable set at time 𝑡𝑘 starting from the set 𝑍0

𝑎𝑖𝑘, 𝑏𝑖𝑘 hyperplane parameters guarding the ego-car from car 𝑖 at time 𝑘

generates counterexamples to these contracts (if any exist) by solving for possible

ego-car and traffic behaviors that result in failure of 𝜙. In the reachability step

(GenerateContract), a reach-avoid problem, similar to the one described in Al-

gorithm 1, is then solved to find an overapproximation of the set of time-indexed

states for the ego-car, for which the ego-car is able to steer away from the generated

counterexample. The failure case is indicative of an undecidable result, where it is

inconclusive whether the ego-car can take any action to remain safe under the given

scenario.

Figure 4-1 depicts two iterations of the overall procedure. The left-hand side de-

picts the reachablility step, in which a ruleset and any existing contracts are consid-

ered as constraints in the reachable set computation. The right-hand side illustrates

how we use falsification to find counterexamples with respect to the contracts. The

counterexample is treated as an obstacle to avoid in the subsequent iteration, at which

point, a set of constraints are created that separates the set difference between the

reachable set at the previous step and the one at the current step.

Solving the reach-avoid problem, versus constructing contracts based only on coun-

terexamples, serves two purposes. First, it allows selection of new contracts that min-

imize the volume of the reachable set treated as unsafe in the next iteration under the

contract. Second, we can verify whether it is feasible for the ego-car to reach the final

59

Algorithm 5 SynthesizeContracts
Input: 𝒮 = (ℛ, 𝐴,I,O): scenario, 𝜓(·): safety condition function, 𝛼: chance con-
straint, 𝑇 : time horizon.
Output: 𝒞: safety contract for each timestep 𝑘 ∈ {0, . . . , 𝑇}.
1: 𝒞 ← InitializeContract(𝒮)
2: repeat
3: 𝑥̄, 𝑝(𝑤̄)← GenerateCounterexamples(𝒮, 𝒞, 𝜓(·), 𝑇)
4: 𝒞 ← GenerateContract(𝒮, 𝒞, 𝑥̄)
5: until (𝑝(𝑤̄) < 𝛼𝑇) ∨ (𝒞 = ∅)
6: if (𝒞 = ∅) ∨ ¬IsReachable(O, 𝒞𝑇) then
7: return failure
8: return 𝒞

I

safe reach sets

InitializeContract

I

O

𝑧0 𝑧1
𝑧2

𝑧3

𝑥𝑖0𝑥𝑖1
𝑥𝑖2

𝑥𝑖3

GenerateCounterexamples

𝜅13(·) = 0

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

I

GenerateContract

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

I

O

𝑧0 𝑧1
𝑧2

𝑧3

𝑥𝑖0

𝑥𝑖1
𝑥𝑖2𝑥𝑖3

GenerateCounterexamples

Figure 4-1: Two iterations of the overall approach.

set from within the initial set under the computed contracts (the check IsReachable

in Algorithm 5).

4.2.2 Gradient-Based Probabilistic Falsification

Below, we describe the subroutine GenerateCounterexamples, which is called

from Algorithm 5, Line 3 to generate counterexample traffic scenarios. In general, we

are interested in finding counterexamples to the safety specification: dynamically fea-

sible trajectories that falsify our safety condition 𝜙 within a given chance constraint

on the underlying probabilistic behavior model. We solve a direct-collocation trajec-

60

tory optimization problem [31] by discretizing time 𝑘 = {0, . . . , 𝑇} with time step

ℎ, where 𝑡𝑘 = ℎ𝑘. We let 𝑢̄, 𝑤̄, 𝑥̄ denote, respectively, the sequences 𝑢̄ = {𝑢𝑘}𝑇𝑘=0,

𝑤̄ = {𝑤𝑘}𝑇𝑘=0, and 𝑥̄ = {𝑥𝑘}𝑇𝑘=0.

The counterexample trajectory is summarized by a collection of decision variables

{ℎ, 𝑢̄, 𝑤̄, 𝑥̄} that falsify the condition 𝑥̄ |= 𝜙 but satisfy, at a minimum, the system

dynamics (4.2), the initial conditions, and some threshold on the likelihood of selecting

the random perturbations 𝑤̄. We aim to find the most likely explanations of the failure

under the given model motivating the following problem:

max
ℎ,𝑢̄,𝑤̄,𝑥̄

𝑝(𝑤̄)

s.t. 𝑥𝑘+1 − 𝑥𝑘 = ℎ𝑓𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, ∀𝑘 = 0, . . . , 𝑇 − 1 (dynamics)

𝑥𝑘 ∈ 𝒳 , ∀𝑘 = 0, . . . , 𝑇

𝑢𝑘 ∈ 𝒰 , ∀𝑘 = 0, . . . , 𝑇 − 1

𝑥0 ∈ 𝒳0, 𝑢0 ∈ 𝒰 (initial conditions)

𝜓(𝑥𝑇) ≤ 0 (safety specification)

𝜅𝑗𝑘(𝑥𝑘) ≤ 0, ∀𝑗 = 1, . . . , 𝑄, ∀𝑘 = 0, . . . , 𝑇 (contracts)

𝑝(𝑤̄) ≥ 𝛼𝑇 (chance constraint)

(4.3)

where 𝑓𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 1
6
(𝑓𝑘 + 4𝑓 + 𝑓𝑘+1), 𝑓𝑘 = 𝑓𝜌(𝑥𝑘, 𝑢𝑘, 𝑤𝑘), and

𝑓 = 𝑓𝜌

(︂
1

2
(𝑢𝑘 + 𝑢𝑘+1) +

ℎ

8
(𝑓𝑘 + 𝑓𝑘+1),

1

2
(𝑢𝑘 + 𝑢𝑘+1),

1

2
(𝑤𝑘 + 𝑤𝑘+1)

)︂
.

The function 𝜅𝑗𝑘(·) ∈ 𝒞 represents constraints of the form (𝑎𝑗𝑘)
𝑇𝑥𝑘 ≤ 𝑏𝑗𝑘, 𝑎

𝑗
𝑘 ∈ R𝑛𝑒𝑔𝑜 ,

𝑏𝑗𝑘 ∈ R at time step 𝑘 due to a contract 𝑗, the safety-preserving contracts the ego-

car must adhere to. When (4.3) is solvable, we end up with corner cases to the

hypothesis for 𝜅𝑗(·) found thus far. Every time a new constraint is added to 𝒞, the

condition 𝜙 becomes harder and harder to falsify. We revisit the computation of 𝜅𝑗(·)

in Section 4.2.4.

Notice that we can choose to leave out the last constraint in (4.3) since the optimal

choice of 𝑤̄ is a maximizer for 𝑝(𝑤̄) and hence a check of the optimal values is sufficient

61

to verify the chance constraint.

The task now is to find the representation 𝑝(𝑤̄) and express 𝐽(𝑤̄) as a convex

cost such that argmax𝑤̄ 𝑝(𝑤̄) = argmax𝑤̄ 𝐽(𝑤̄). Taking 𝑤𝑘 ∼ 𝒩 (0,Σ) (where Σ

is block-diagonal of Σ𝑖) and noting the probability of action 𝑤𝑘 is drawn from the

distribution

𝑝(𝑤𝑘) = (2𝜋)−
𝑛
2 |Σ|−

1
2 exp(−1

2
𝑤𝑇

𝑘 Σ
−1𝑤𝑘)

we obtain a log-probability distribution

𝑝(𝑤1, . . . , 𝑤𝑇) = −
𝑇∏︁

𝑘=0

𝑝(𝑤𝑘).

We can easily obtain the log-likelihood representation of the probability as

log 𝑝(𝑤̄) =
𝑁∑︁
𝑘=0

log 𝑝(𝑤𝑘) = −
𝑛𝑁

2
log 2𝜋 − 𝑁

2
log |Σ| − 1

2

𝑁∑︁
𝑘=0

𝑤𝑇
𝑘 Σ

−1𝑤𝑘.

Due to monotonicity of the log operator, the cost function may be more simply written

as

𝐽(𝑤̄) =
𝑁∑︁
𝑘=0

𝑤𝑇
𝑘 Σ

−1𝑤𝑘,

and the chance constraint as log 𝑝(𝑤̄) ≥ log𝛼−log 𝑇 . We argue that maximizing 𝑝(𝑤̄)

serves the important purpose of maximizing the diversity of the new counterexamples.

Note that the problem in (4.3) is a nonconvex one to solve in general. Hence,

we cannot guarantee a solution will be found and hence cannot hope to exhaust all

possible counterexamples (i.e. achieve completeness). However, it is important to

note that we can achieve soundness of our solutions to (4.3).

4.2.3 Collision-Free Safety Conditions

The safety specification constraint in the formulation (4.3) of the falsification problem

involves Minkowski operations, which are difficult to solve analytically. To this end,

we consider the following reformulation of the safety specification. Let ℬ𝑖(𝑥𝑖𝑘;ℛ) ⊂

R2 be the orientation-dependent footprint of the 𝑖th vehicle at time 𝑘, that is, the

62

Cartesian space occupied at state 𝑥𝑖. The footprints may be adjusted to consider, e.g.,

uncertainty about the state of the other cars, i.e., it may be an overapproximation

to the true footprint of the traffic cars, as previously described in Section 3.1.3. Our

safety criteria is one where we wish to avoid crashes with other vehicles, i.e.,

𝜙 =
⋀︁
𝑖,𝑘

(ℬ(𝑧𝑘) ∩ ℬ𝑖(𝑥𝑖𝑘;ℛ)) = ∅.

We apply the mild assumption that we only search for conditions in which the ego-car

is in collision with only one other vehicle at a time, which makes it easy to reduce a

potentially combinatorial problem into one in which we solve (4.3) sequentially.

Unfortunately, finding analytical forms for collision of two rectangular objects

involves Minkowski operations, which are difficult to solve analytically as previously

mentioned. We instead express collision in terms of two inscribing ellipses using the

following result.

Lemma 1. Let 𝑎𝑖 and 𝑏𝑖 be the length and width of vehicle 𝑖, 𝑝𝑖 = [𝑥𝑖 𝑦𝑖]𝑇 be its

Cartesian coordinates, and 𝜃𝑖 its angle. Let 𝐶𝑖 = 𝑅(𝜃𝑖)

⎡⎣ 𝑎𝑖 0

0 𝑏𝑖

⎤⎦, where 𝑅(𝜃𝑖) is a

rotation matrix, and let 𝑝 = 𝐶−1
0 (𝑝1 − 𝑝0). Then,

ℬ𝑖(𝑥0;ℛ) ∩ ℬ𝑖(𝑥1;ℛ) ̸= ∅ ⇒ 𝑧𝑇 (𝐶1 +𝑅1)
−1(𝐶1 +𝑅1)

−𝑇 𝑧 ≤ 1. (4.4)

Proof. (sketch) Condition (4.4) can be obtained directly by transforming one of the

ellipses to the unit disc, then applying the same transform to the other ellipse and

writing out the expression for containment of the origin.

We note that the constraint (4.4) preserves soundness of the falsification problem:

when a trajectory is found that satisfies this condition, that trajectory falsifies 𝜙.

4.2.4 Reachability with Contracts

In the following, we describe the subroutine GenerateContract, which is called

from Algorithm 5, Line 4, and generates a new proposal contract at each iteration.

63

Let 𝐹 (𝑡𝑘;𝑍0) denote an over-approximation to the reachable set at time 𝑡𝑘 at

iteration 𝑗 of the main loop in Algorithm 5, i.e., the time-indexed set of states 𝑧𝑘 ∈ 𝒵

for which there exists a control 𝑢 : R≥0 ↦→ 𝒰 containing the trajectories satisfying 𝑧̇ =

𝑓𝑒𝑔𝑜(𝑧, 𝑢) when starting in the initial set 𝑍0. We also refer the reader to Section 3.2.2

for more details on how the reachable set is defined.

Our objective is essentially the converse of the falsification problem: to compute

a safe reachable set for the ego-car 𝐹𝑠𝑎𝑓𝑒(𝑡𝑘;𝑍0) ⊆ 𝐹 (𝑡𝑘;𝑍0) such that it preserves the

ruleset ℛ and is not in collision with any other traffic vehicle at all timesteps.

An overview of the approach may be found in Algorithm 6. For simplicity, we

only present the computation of forward reachable sets but this can be extended

to backward reachable sets with the modifications explained in Chapter 3. Once a

contract is created, we extend the reachable set to verify that it intersects the goal

region.

Algorithm 6 GenerateContract (⊕ denotes the Minkowski sum)

Input: 𝒮 = (ℛ, 𝐴,I,O): scenario, 𝒞 ′: previous contract, 𝑥̄: a trajectory for the
system of traffic cars, 𝑇 : time horizon.
Output: 𝒞: safety contract for each timestep 𝑘 ∈ {0, . . . , 𝑇}.
1: 𝑍0 ← I ◁ assign initial set from scenario
2: 𝐹𝑠𝑎𝑓𝑒(𝑡0;𝑍0)← 𝑍0 ∩ 𝐶 ′

0

3: 𝒞𝑘 ← 𝒵, ∀𝑘 ∈ {0, . . . , 𝑇} ◁ initialize the contract for all times
4: for all 𝑘 ∈ {0, . . . , 𝑇} do
5: 𝐹 (𝑡𝑘;𝑍0)← 𝐹 (ℎ;𝐹𝑠𝑎𝑓𝑒(𝑡𝑘−1;𝑍0)) ∩ 𝒞 ′𝑘 ◁ Compute the reachable set
6: 𝒪𝑖

𝑘 ← ℬ𝑖(𝑥𝑖𝑘;ℛ)⊕ ℬ(𝐹 (𝑡𝑘;𝑍0)) ◁ Compute the traffic constraints
7: for all 𝑖 ∈ {1, . . . , 𝑁} such that 𝒪𝑖

𝑘 ̸= ∅ do
8: 𝒞𝑘 ← ComputeContract(𝐹 (𝑡𝑘;𝑍0) ∩ 𝒞 ′𝑘,𝒪𝑖

𝑘) ∩ 𝒞𝑘
9: 𝐹𝑠𝑎𝑓𝑒(𝑡𝑘;𝑋

0
0)← 𝐹 (𝑡𝑘;𝑋

0
0) ∩ 𝒞𝑘 ◁ Compute the safe reachable set

10: return 𝒞

4.2.5 Computation of Contract

We now describe the subroutine ComputeContract, called from Algorithm 6,

Line 8, which computes a new contract from the reachable set. In particular, given a

reachable set 𝐹 (𝑡𝑘;𝑍0) computed at some iteration 𝑘 of the main loop in Algorithm 6,

64

we want to select a hyperplane for each vehicle 𝑖, 𝑖 ∈ {1, . . . , 𝑁}, of the form

(𝑎𝑖𝑘)
𝑇 𝑧𝑘 ≤ 𝑏𝑖𝑘

such that our new safe set 𝐹𝑠𝑎𝑓𝑒(𝑡𝑘;𝑍0) at time step 𝑘 is a valid reachable set that is

safe with respect to the counterexample as well as respects the current contract 𝒞𝑘.

Precisely, in Line 8 of Algorithm 6, values for 𝑎𝑖𝑘, 𝑏𝑖𝑘 are selected such that (𝑎𝑖𝑘)𝑇𝜒𝑖 > 𝑏𝑖𝑘

for all vertices 𝜒𝑖 of 𝒪𝑖
𝑘, the 𝑖th footprint of the counterexample, so that we obtain

𝐹𝑠𝑎𝑓𝑒(𝑡𝑘;𝑍0) = 𝐹 (𝑡𝑘;𝑍0) ∩ {𝑧𝑘 | (𝑎𝑖𝑘)𝑇 𝑧𝑘 ≤ 𝑏𝑖𝑘,∀𝑖 = 1, . . . , 𝑁}. (4.5)

That is, we select 𝑎𝑖𝑘 and 𝑏𝑖𝑘 such that we may treat it as an obstacle in computing the

reachable set at future times. In line 6, we let ℬ(𝑍) denote an orientation-dependent

Cartesian expansion of some set 𝑍 ⊂ 𝒵, and let ℬ𝑖(𝑥𝑖𝑘;ℛ) denote a state-dependent

inflation of vehicle 𝑖 according to the ruleset ℛ, as previously described.

Within ComputeContract, we select one hyperplane, i.e., 𝑎𝑖𝑘 and 𝑏𝑖𝑘, in such

a way as to maximize the volume of the resulting safe reachable set 𝐹𝑠𝑎𝑓𝑒(·; ·). If

we assume 𝐹 (·; ·) is a union of polytopes, we can easily choose one from among the

facets that maximizes the union of the remaining polytopes in (4.5) and satisfies

(𝑎𝑖𝑘)
𝑇𝜒𝑖 > 𝑏𝑖𝑘. Finally, 𝒞𝑘 is returned as the intersection of 𝒞 ′𝑘 and the new contract.

4.2.6 Rules of the Road

In the following we consider the subset of rules from the Vienna Convention on Traffic

Rules [22], see Table 4.2. The rules described here are associated with the respective

road segments, and, together, they constitute the ruleset ℛ. We select these rules

as they form a subset of engagement rules for highway scenarios and exclude rules

involving traffic signals and other discrete conditionals. For simplicity, we show the

constraint sets for straight road segments and equally sized cars.

We assume that the centerline of carriageway is along the 𝑥 axis of the ego-car

for straight road segments. The length of the road segment is denoted by 𝐿, the

65

width of a lane by 𝑊 , and the number of left and right lanes by 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡,

respectively. A sequence 0 ≤ 𝜉1𝑥 < 𝜁1𝑥 < 𝜉2𝑥 < . . . < 𝜁𝑛𝑠𝑜𝑙𝑖𝑑
𝑥 ≤ 𝐿 defines the solid line

segments (𝜉ℓ𝑥, 𝜁
ℓ
𝑥) along the centerline of the road. The pose and longitudinal speed

of the vehicles are denoted by (𝑥𝑖𝑐, 𝑦
𝑖
𝑐, 𝜃

𝑖) and 𝑣𝑖, respectively, where 0 ≤ 𝑖 ≤ 𝑁 , and

𝑖 = 0 represents the ego-car. The average speed of vehicles around the ego-car and

in the same lane is denoted by 𝑣. The safe distances to other vehicles ahead and

behind the ego is expressed as 𝜖𝑠𝑎𝑓𝑒𝑥 > 0, while the lateral safe distance to oncoming

vehicles is expressed as 𝜖𝑠𝑎𝑓𝑒𝑦 > 0. Overtaking maneuvers are performed within a

stretch of the road segment of length 2 𝜖𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑥 > 0 centered on the car that is being

overtaken. Overtaking is safe if there are no other cars in the left lane where the ego-

car performs the maneuver within a distance of 𝜖𝑠𝑎𝑓𝑒−𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒
𝑥 around the car being

overtaken. Lastly, the legal speed limit for a lane is given by 𝜖𝑙𝑒𝑔𝑎𝑙𝑣 > 0.

Those rules that are only a function of the ego-car (rules 1, 4, 8) are included

in InitializeContract, while those that are functions of the joint state space are

included only when a counterexample is obtained from the falsification step. Hence,

these rules are included in ComputeContract as a modification to the traffic car

footprint, i.e., ℬ𝑖(𝑥𝑖𝑘;ℛ).

4.3 Implementation

We implemented the falsification algorithm, scenario, and system models using the

Drake toolbox [61]. We use the SNOPT optimization package [28] for solving the

sequential quadratic program (SQP) in (4.3). We furthermore parallelize the con-

straint evaluation before passing to the solver in order to speed up the solve time. To

generate new contracts, we compute the reachable sets using a Taylor expansion to

the nonlinear dynamics with sets being expressed as zonotopes; we do this with the

aid of the CORA reachability tool [2]. Set operations are carried out using the MPT

toolbox [34], which is based on a polytopic representation of sets.

66

Table 4.2: Rules of the road for highway scenarios.
No. Rule Constraint set

1 Don’t drive in the left lanes. {0 ≤ 𝑥0𝑐 ≤ 𝐿,−𝑛𝑟𝑖𝑔ℎ𝑡 ·𝑊 ≤ 𝑦0𝑐 ≤ 0}

2 If driving behind another car, keep
a reasonable distance away to avoid
collision if it suddenly stops.

{𝑥𝑖𝑐 − 𝑥0𝑐 ≥ 𝜖𝑠𝑎𝑓𝑒𝑥 𝑣0 | ∀𝑖 . 𝑥𝑖𝑐 − 𝑥0𝑐 ≥ 0 ∧
|𝑦𝑖𝑐 − 𝑦0𝑐 | < 𝑊}

3 If you want to slow down, give clear
warning and do not inconvenience
drivers behind you.

{𝑥0𝑐 − 𝑥𝑖𝑐 ≥ 𝜖𝑠𝑎𝑓𝑒𝑥 𝑣0 | ∀𝑖 . 𝑥0𝑐 − 𝑥𝑖𝑐 ≥ 0 ∧
|𝑦𝑖𝑐 − 𝑦0𝑐 | < 𝑊}

4 Don’t cross solid lines. {𝜉ℓ𝑥 ≤ 𝑥0𝑐 ≤ 𝜁ℓ𝑥 ∧ −𝑛𝑟𝑖𝑔ℎ𝑡 ·𝑊 ≤ 𝑦0𝑐 ≤ 0 |
1 ≤ ℓ ≤ 𝑛𝑠𝑜𝑙𝑖𝑑}

5 Overtake on the left when it is safe. {𝑦0𝑐 − 𝑦𝑖𝑐 > 𝑊 ∧ 𝑣0 > 𝑣𝑖 |
∀𝑖 . 𝑣𝑖 > 0 ∧ |𝑥0𝑐 − 𝑥𝑖𝑐| ≤ 𝜖𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑥 ∧
@𝑗 .(|𝑥𝑗𝑐 − 𝑥𝑖𝑐| ≤ 𝜖𝑠𝑎𝑓𝑒−𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒

𝑥 ∧ 𝑦0𝑐 − 𝑦𝑗𝑐 ≤
𝑊)}

6 If another vehicle is trying to over-
take you keep right and don’t accel-
erate. If necessary, slow down and
pull over.

{𝑢0𝑎 ≤ 0 ∧ 𝑦𝑖𝑐 − 𝑦0𝑐 ≥ 𝑊 ∧ 𝑦0𝑐 ≤ 0 |
∀𝑖 . 𝑦𝑖𝑐− 𝑦0𝑐 ≤ 1.5𝑊 ∧ 𝑣𝑖 > 0∧ |𝑥𝑖𝑐−𝑥0𝑐 | ≤
𝜖𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒𝑥 }

7 If passing oncoming traffic, leave suf-
ficient lateral space to not get hit. If
obstructed, slow down.

{𝑦𝑖𝑐 − 𝑦0𝑐 ≥ 𝜖𝑠𝑎𝑓𝑒𝑦 | 𝑦𝑖𝑐 ≥ 0 ∧ 𝑣𝑖 ≤ 0}

8 Don’t drive abnormally slowly such
that you impede the progress of other
vehicles. Don’t drive above the speed
limit or abnormally fast.

{|𝑣0 − 𝑣| ≤ 𝜖𝑣, |𝑣0| ≤ 𝜖𝑙𝑒𝑔𝑎𝑙𝑣 }

67

We consider the following model for both the ego-car and traffic vehicles:

𝑥̇ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐

𝑦𝑐

𝜃

𝑣̇

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣 cos(𝜃)

𝑣 sin(𝜃)

𝑣
𝐿
tan(𝑢𝛿)

𝑢𝑎

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑢 =

⎡⎣ 𝑢𝛿

𝑢𝑎

⎤⎦ .

As previously, 𝑥𝑐 and 𝑦𝑐 are Cartesian positions at the center of the vehicle, 𝜃 is the

heading angle, and 𝑣 is the forward speed, while 𝑢𝛿 and 𝑢𝑎 denote the steering angle

and acceleration inputs, respectively.

To represent naturalistic behaviors for the traffic cars, we consider the intelligent

driver model (IDM) [63], a model whose parameters are typically fit to driver data

and which is used to represent the longitudinal actions (acceleration) of actual drivers.

We consider a pure-pursuit controller [17] to model the lateral actions (steering) of

drivers. Essentially, the IDM model allows cars to react to one another while adapting

to a driver’s preferences for speed, acceleration, and time headway between vehicles.

The pure-pursuit controller allows steering to be adjusted smoothly so that the vehicle

converges to a desired curve. In our experiements, we set the desired curve to be fixed

as the centerline of a target lane to drive to. We randomize these traffic behaviors

by defining Σ𝑖, where Σ𝑖 = diag{𝜎𝛿, 𝜎𝑎}, and by treating the disturbance signal as

additive noise to the nominal acceleration and steering commands provided by IDM

and pure pursuit. We adapt to different driving styles by using the complete list of

parameters in Table 4.3. We furthermore augment the implementation by ignoring

vehicles beyond a limited perception range.

The road geometry is configurable for highway scenarios in which any number

of lanes and lane sizes can be chosen for the scenario. Our aggregate model of the

entire traffic system is implemented to account for all of the traffic participants in

the context of their positions on the road. The models are encoded such that partial

derivatives can be easily obtained via automatic differentiation.

68

Table 4.3: Parameters used to model driver behaviors for the traffic cars.
Driving Style

Description Symbol Normal Aggressive

IDM

Reference speed (m/s) 𝑣𝑟𝑒𝑓 10 1.5
Maximum acceleration (m/s2) 𝑎 1 4
Comfortable deceleration (m/s2) 𝑏 3 6
Minimum-desired net distance (m) 𝑠0 1 0.5
Time headway to lead vehicle (s) 𝑡ℎ 0.1 0.05
Free-road exponent 𝛿 4 4

Pure-Pursuit Lookahead distance (m) 𝑠𝑙𝑜𝑜𝑘 15 10

Perception Range (m) 𝑠𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 100 100

Disturbances Steering angle variance (rad2) 𝜎𝛿 0.1 5
Acceleration variance (m2/s4) 𝜎𝑎 0.1 2.5

4.4 Results

In this scenario, we consider the ego-car sandwiched between two traffic cars in the

right lane of a two-lane highway with opposing traffic lane, which may be used for

overtaking if free. We synthesized contracts using both the ruleset in Table 4.2 and

a relaxed ruleset, in which we disable rules 1 and 3 to enable evasive maneuvers

onto the other lane. For both rulesets, we explore traffic models having two levels of

aggressiveness (normal and aggressive) using the parameters in Table 4.3. In Figure 4-

2, we depict different iterations of Algorithm 5 for the relaxed rules and normal driving

style. We compare the contracts obtained at a fixed iteration of the algorithm for each

case in Figure 4-3 and, for each case, report the log-likelihood of the counterexample

normalized on |Σ| in Figure 4-4.

We observe that with more iterations (and more unlikely behaviors of the traffic

cars) more contracts are added, making the contract more restrictive but also harder

to falsify, as indicated by the log-likelihood. With a greater number of rules and

more aggressive traffic, we note that the contract gets smaller and more prohibitive

(see Figure 4-3). We also note that relaxing the ruleset (e.g. allowing lane switches)

enables more behaviors for the ego-car demonstrating that safety can be preserved

at the expense of rule-breaking in some scenarios. Moreover, the ego-car can readily

69

(a) Iteration 2 (b) Iteration 3

(c) Iteration 7 (d) Iteration 14

Figure 4-2: Different iterations of the approach. Within each iteration, the upper two
plots indicate a counterexample trajectory of the traffic system that falsifies collision-
free behavior under the proposed contracts. The lower plot illustrates a new contract
that guards against the counterexample.

estimate the cost of violating rules of the road by observing the varying contracts

depending on the set of actively enforced rules.

We note that for the normal driving style, the log-likelihood quickly decreases,

whereas for the aggressive driving styles, the log-likelihood remains high as contracts

are added indicating that aggressive traffic can induce failure regardless of the ego-

car’s behavior. In both of the agressive-driving cases, empty contracts were returned

before exhausting possible counterexamples. Of the normal-driving cases, the relaxed

70

set provides a contract with 14 counterexamples, whereas the strict set provides five

counterexamples, indicating that changing lanes presents more possible failure events

to guard against.

(a) Relaxed rules, normal driving (b) Relaxed rules, aggressive driving

(c) Strict rules, normal driving (d) Strict rules, aggressive driving

Figure 4-3: The contract for timestep 𝑡 = 4.8𝑠 at iteration 4 for each set of parameters.

Figure 4-4: The log-likelihood for each test case across all iterations. The red ×
marks iterations where the contract terminated with an empty set, and the green
dashed line indicates the chance constraint 𝛼.

71

72

Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we presented a novel approach to safety verification for autonomous

systems based on contract synthesis.

For the first part, we studied the problem of safety verification of controllers for au-

tonomous systems and proposed a novel framework for synthesizing safety guarantees

for entire road networks building upon compositional assume-guarantee contracts.

Our framework hinges on verifying a library of local road models against a given ego-

car and fixed traffic models, concurrently with synthesizing safety contracts, which

may also be used for the composition of road models. The library can then be used

to certify the safety of executing ego-car controllers satisfying a controller contract

over road networks. We further demonstrated the effectiveness of our approach on

a case study involving a library of local road models, which enabled us to verify a

substantial part of Mid-Manhattan.

In the second part, we presented an extension of the framework to facilitate the

incorporation of a large variety of probabilistic traffic behaviors and the subsequent

generation of the appropriate safety contracts. We overcome issues of computational

tractability by iteratively generating a set of safety constraints, based on the methods

presented in the first part, and generating counterexamples, i.e., traffic scenarios,

using gradient-based probabilistic falsification. We judiciously account for rules of the

73

roads in terms of state space constraints enforced during reachability analysis. The

empirical results on a variety of real-world inspired scenarios validate the favorable

performance of our approach and reaffirm its practical applicability.

5.2 Future Work

We envision that our method can be used to inform the decision-making and planning

system of an autonomous agent about the appropriate safety constraints applicable

in a particular traffic and road scenario in order to guarantee safety while executing

a motion plan.

In future work, we plan to extend the library of locally verified road models to

capture a wider range of road geometries, including multiway intersections and curved

roads. This will enable us to build up a more complete library of road segments and

to compose safety guarantees for larger, more complex road networks potentially even

during online deployment given that the verified library is large enough.

We are also interested in extending our method to synthesize safety constraints

that are simultaneously applicable across a wide variety of traffic scenarios as a way

to capture more traffic scenarios. A potential avenue of research in this realm is to

use learning-based strategies to synthesize safety constraints that are then verified

using formal techniques such as reachability analysis.

Learning-based methods are also a crucial component of perception, prediction,

and social planning algorithms. An interesting extension to our current work is to

allow our framework to consider those type of algorithms. The challenges here lie

in providing safety guarantees of systems that are hard to describe analytically and

potentially have a very high-dimensional state space making it difficult to use tra-

ditional verification techniques. An alternative verification technique to tackle these

challenges could entail probabilistic safety guarantees, as opposed to deterministic

guarantees, that provide guarantees for most of the scenarios, as opposed to all the

scenarios.

Finally, we envision to augment the verification framework with a roll-out strategy

74

for controllers that leverage the local safety contracts. The goal is to provide an

online safety contract that ensures the long-term safety of the ego-car and show the

effectiveness of using safety contracts in real-world experiments.

5.3 Lessons Learned

The work presented in this thesis has taught me numerous crucial insights that will

be very valuable for future research. The field of verification lies at the intersection of

formal methods, motion planning (including optimization methods), and numerical

approximation techniques. This requires the careful consideration of the trade-off

between accuracy and computational tractability, even more so than in other aspects

of robotics. On the one hand, high-fidelity models enable us to synthesize guaran-

tees that capture complex real-world scenarios, but at the same time such models

can quickly become computationally intractable. On the other hand, overly simple

models might be very efficient in terms of computation time, but such models make

it increasingly difficult to transfer the resulting guarantees to real-world systems. In

order to push the boundaries of achievable verification guarantees, it is therefore im-

portant to gain problem-specific insights that can help increase the considered model

complexity while maintaining computational tractability.

In the research presented here, two insights were critical to the success of the

proposed methods. First, by appropriately decomposing the problem, both in terms

of the considered traffic scenarios and the spatial domain, we gained computational

tractability while being able to consider fairly complex models. Second, by consider-

ing contracts instead of actual control systems, we achieved generality of the safety

guarantees and simultaneously circumvented the issue of having a potentially complex

controller implementation in the loop.

Finally, I would like to mention some of the prevalent challenges in the imple-

mentation. A fundamental aspect is to consider appropriate numerical tools that

can provide the necessary approximate solutions. Usually, we cannot hope for ex-

act solutions, which necessitates and motivates the use of numerical approximation

75

tools. I spent quite some time to select the appropriate tools for the simulations and

experiments, which would serve our needs. Most of the computations mentioned in

this thesis were set-based and required set operations, such as set difference and set

intersection. On numerous occasions, I have encountered that the complexity of the

set representation had a significant impact on the runtime of the algorithms. A no-

table portion of effort, thus, went into implementing numerical methods that ensure

that the set representation is fairly compact, e.g., for a polytope representation of

sets this required to always keep the number of vertices at a minimum. Obtaining

some of the results was only made possible by carefully maintaining an efficient set

representation.

5.4 Funding

This research was supported in part by the Toyota Research Institute (TRI) and Na-

tional Science Foundation award IIS-1723943. This article solely reflects the opinions

and conclusions of its authors, and not TRI or any other Toyota entity.

76

Bibliography

[1] D. Althoff, M. Althoff, D. Wollherr, and M. Buss. Probabilistic collision state
checker for crowded environments. In IEEE ICRA, pages 1492–1498, May 2010.
doi: 10.1109/ROBOT.2010.5509369.

[2] Matthias Althoff. An introduction to CORA. In ARCH, CPSWeek, pages 120–
151, 2015.

[3] Matthias Althoff and John M. Dolan. Online verification of automated road vehi-
cles using reachability analysis. IEEE T-RO, 30(4):903–918, 2014. doi: 10.1109/
TRO.2014.2312453. URL http://dx.doi.org/10.1109/TRO.2014.2312453.

[4] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-
H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theoretical computer science, 138(1):
3–34, 1995.

[5] Rajeev Alur, Thao Dang, and Franjo Ivančić. Predicate abstraction for reacha-
bility analysis of hybrid systems. Transactions on Embedded Computing Systems,
5(1):152–199, 2006.

[6] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Compositional synthesis with para-
metric reactive controllers. In Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control, pages 215–224. ACM, 2016.

[7] Sweewarman Balachandran, Necmiye Ozay, and Ella M. Atkins. Verification
guided refinement of flight safety assessment and management system for takeoff.
Journal of Aerospace Information Systems, 13:357–369, 2016. doi: doi:10.2514/
1.I010408. URL http://dx.doi.org/10.2514/1.I010408.

[8] Nir Baram, Oron Anschel, Itai Caspi, and Shie Mannor. End-to-end differentiable
adversarial imitation learning. In International Conference on Machine Learning,
pages 390–399, 2017.

[9] Amit Bhatia and Emilio Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In International Workshop on Hybrid
Systems: Computation and Control, pages 142–156. Springer, 2004.

77

[10] Davide Bresolin, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano
Villa. Verification of robotic surgery tasks by reachability analysis: A comparison
of tools. In 17th Euromicro Conference on Digital System Design, pages 659–662.
IEEE, 2014.

[11] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer
for non-linear hybrid systems. In International Conference on Computer Aided
Verification, pages 258–263. Springer, 2013.

[12] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran
Frehse, and Stefan Kowalewski. A benchmark suite for hybrid systems reacha-
bility analysis. In NASA Formal Methods Symposium, pages 408–414. Springer,
2015.

[13] Peng Cheng and Vijay Kumar. Sampling-based falsification and verification
of controllers for continuous dynamic systems. The International Journal of
Robotics Research, 27(11-12):1232–1245, 2008.

[14] Alongkrit Chutinan and Bruce H Krogh. Verification of polyhedral-invariant
hybrid automata using polygonal flow pipe approximations. In International
Workshop on Hybrid Systems: Computation and Control, pages 76–90. Springer,
1999.

[15] Edmund Clarke, Orna Grumberg, and D Long. Verification tools for finite-
state concurrent systems. In Workshop/School/Symposium of the REX Project
(Research and Education in Concurrent Systems), pages 124–175. Springer, 1993.

[16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In International Conference on
Computer Aided Verification, pages 154–169. Springer, 2000.

[17] R. Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical Report CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh,
PA, January 1992.

[18] Eric Dallal and Paulo Tabuada. Decomposing controller synthesis for safety
specifications. In 55th Conference on Decision and Control, pages 5720–5725.
IEEE, 2016.

[19] Jonathan A DeCastro and Hadas Kress-Gazit. Synthesis of nonlinear continuous
controllers for verifiably correct high-level, reactive behaviors. The International
Journal of Robotics Research, 34(3):378–394, 2015.

[20] Jonathan A DeCastro and Hadas Kress-Gazit. Nonlinear controller synthesis
and automatic workspace partitioning for reactive high-level behaviors. In In-
ternational Conference on Hybrid Systems: Computation and Control, Vienna,
Austria, April 2016. ACM. doi: 10.1145/2883817.2883832.

78

[21] Jonathan A DeCastro*, Lucas Liebenwein*, Cristian-Ioan Vasile, Russ Tedrake,
Sertac Karaman, and Daniela Rus. Counterexample-guided safety contracts for
autonomous driving. In International Workshop on the Algorithmic Foundations
of Robotics (submitted), 2018.

[22] Convention on Road Traffic. Economic Commission for Europe – Inland
Transport Committee, Vienna, Austria, E/CONF.56/16/Rev.1/Amend.1 edi-
tion, 1968.

[23] Kyle Edelberg, Dennis Wai, Jason Reid, Eric Kulczycki, and Paul Backes.
Workspace and reachability analysis of a robotic arm for sample cache retrieval
from a mars rover. In AIAA SPACE Conference and Exposition, page 4538,
2015.

[24] Stephen M Erlien, Susumu Fujita, and Joseph Christian Gerdes. Shared steering
control using safe envelopes for obstacle avoidance and vehicle stability. Trans-
actions on Intelligent Transportation Systems, 17(2):441–451, 2016.

[25] Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In Proceedings of
the 18th international conference on hybrid systems: computation and control,
pages 11–20. ACM, 2015.

[26] Paul Furgale, Ulrich Schwesinger, Martin Rufli, Wojciech Derendarz, Hugo
Grimmett, Peter Mühlfellner, Stefan Wonneberger, Julian Timpner, Stephan
Rottmann, Bo Li, et al. Toward automated driving in cities using close-to-market
sensors: An overview of the v-charge project. In Intelligent Vehicles Symposium,
pages 809–816. IEEE, 2013.

[27] Roland Geraerts and Mark H Overmars. Reachability analysis of sampling based
planners. In Proceedings of the International Conference on Robotics and Au-
tomation, pages 404–410. IEEE, 2005.

[28] Philip E Gill, Walter Murray, and Michael A Saunders. SNOPT: An SQP Al-
gorithm for Large-Scale Constrained Optimization. SIAM Review, 47(1):99–
131, January 2005. ISSN 0036-1445. doi: 10.1137/S0036144504446096. URL
http://dx.doi.org/10.1137/S0036144504446096.

[29] Jeremy H Gillula, Haomiao Huang, Michael P Vitus, and Claire J Tomlin. De-
sign of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor
aerobatics in theory and practice. In International Conference on Robotics and
Automation, pages 1649–1654. IEEE, 2010.

[30] Jeremy H Gillula, Gabriel M Hoffmann, Haomiao Huang, Michael P Vitus, and
Claire J Tomlin. Applications of hybrid reachability analysis to robotic aerial
vehicles. The International Journal of Robotics Research, 30(3):335–354, 2011.

79

[31] Charles R Hargraves and Stephen W Paris. Direct trajectory optimization us-
ing nonlinear programming and collocation. Journal of Guidance, Control, and
Dynamics, 10(4):338–342, 1987.

[32] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model
checker for hybrid systems, pages 460–463. Springer, Berlin, Heidelberg, 1997.
ISBN 978-3-540-69195-2. doi: 10.1007/3-540-63166-6_48. URL http://dx.
doi.org/10.1007/3-540-63166-6_48.

[33] Thomas A Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we
guarantee: Methodology and case studies, pages 440–451. Springer, Berlin, 1998.
ISBN 978-3-540-69339-0. doi: 10.1007/BFb0028765. URL http://dx.doi.org/
10.1007/BFb0028765.

[34] Martin Herceg, Michal Kvasnica, Colin N Jones, and Manfred Morari. Multi-
parametric toolbox 3.0. In European Control Conference, pages 502–510. IEEE,
2013.

[35] Fabian Immler. Verified reachability analysis of continuous systems. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 37–51. Springer, 2015.

[36] Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability? Transportation
Research Part A: Policy and Practice, 94, 2016. URL http://www.rand.org/
pubs/research_reports/RR1478.html.

[37] James Kapinski, Jyotirmoy V Deshmukh, Sriram Sankaranarayanan, and Nikos
Arechiga. Simulation-guided lyapunov analysis for hybrid dynamical systems. In
Proceedings of the 17th International Conference on Hybrid Systems: Computa-
tion and Control, pages 133–142. ACM, 2014.

[38] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In 49th Conference on Decision and
Control, pages 7681–7687. IEEE, 2010.

[39] Eric S Kim, Murat Arcak, and Sanjit A Seshia. Compositional controller syn-
thesis for vehicular traffic networks. In 54th Annual Conference on Decision and
Control, pages 6165–6171. IEEE, 2015.

[40] Eric S Kim, Sadra Sadraddini, Calin Belta, Murat Arcak, and Sanjit A Seshia.
Dynamic contracts for distributed temporal logic control of traffic networks. In
56th Annual Conference on Decision and Control, pages 3640–3645. IEEE, 2017.

[41] Jerome Le Ny and George J Pappas. Sequential composition of robust controller
specifications. In International Conference on Robotics and Automation, pages
5190–5195. IEEE, 2012.

80

[42] Lucas Liebenwein, Wilko Schwarting, Cristian-Ioan Vasile, Jonathan DeCastro,
Javier Alonso-Mora, Sertac Karaman, and Daniela Rus. Compositional and
contract-based verification for autonomous driving on road networks. In Inter-
national Symposium on Robotics Research. International Foundation of Robotics
Research, 2017.

[43] Lucas Liebenwein*, Cenk Baykal*, Igor Gilitschenski, Sertac Karaman, and
Daniela Rus. Sampling-based approximation algorithms for reachability anal-
ysis with provable guarantees. In Proceedings of Robotics: Science and Systems,
Pittsburgh, PA, June 2018. doi: 10.15607/RSS.2018.XIV.014.

[44] Stefan B Liu, Hendrik Roehm, Christian Heinzemann, Ingo Lütkebohle, Jens
Oehlerking, and Matthias Althoff. Provably safe motion of mobile robots in
human environments. In International Conference on Intelligent Robots and
Systems, pages 1351–1357. IEEE, 2017.

[45] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research, 36
(8):947–982, 2017.

[46] David Q Mayne, María M Seron, and SV Raković. Robust model predictive
control of constrained linear systems with bounded disturbances. Automatica,
41(2):219–224, 2005.

[47] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic games.
Transactions on Automatic Control, 50(7):947–957, 2005.

[48] Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D Ames,
Jessy W Grizzle, Necmiye Ozay, Huei Peng, and Paulo Tabuada. Correct-by-
construction adaptive cruise control: Two approaches. Transactions on Control
Systems Technology, 24(4):1294–1307, 2016.

[49] Matthew O’Kelly, Houssam Abbas, Sicun Gao, Shin’ichi Shiraishi, Shinpei Kato,
and Rahul Mangharam. Apex : a tool for autonomous vehicle plan verification
and execution. In SAE World Congress and Exhibition, 2016.

[50] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Fraz-
zoli. A survey of motion planning and control techniques for self-driving urban
vehicles. Transactions on Intelligent Vehicles, 1(1):33–55, 2016.

[51] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. Falsification of ltl safety
properties in hybrid systems. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 368–382. Springer,
2009.

81

[52] Oliver Porges, Roberto Lampariello, Jordi Artigas, Armin Wedler, Christoph
Borst, and Máximo A Roa. Reachability and dexterity: Analysis and appli-
cations for space robotics. In Proceedings of the Workshop on Advanced Space
Technologies for Robotics and Automation, 2015.

[53] Matthias Rungger and Majid Zamani. Compositional construction of approxi-
mate abstractions of interconnected control systems. Transactions on Control of
Network Systems, 2016.

[54] Sadra Sadraddini, Janos Rudan, and Calin Belta. Formal synthesis of distributed
optimal traffic control policies. In International Conference on Cyber-Physical
Systems, Pittsburgh , PA, 2017.

[55] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Tam-
ing Dr. Frankenstein: Contract-based design for cyber-physical systems. Euro-
pean Journal of Control, 18(3):217–238, 2012.

[56] Sriram Sankaranarayanan and Georgios Fainekos. Falsification of temporal prop-
erties of hybrid systems using the cross-entropy method. In Proceedings of the
15th International Conference on Hybrid Systems: Computation and Control,
pages 125–134. ACM, 2012.

[57] Wilko Schwarting, Javier Alonso-Mora, Liam Paull, Sertac Karaman, and
Daniela Rus. Parallel autonomy in automated vehicles: safe motion genera-
tion with minimal intervention. In International Conference on Robotics and
Automation, pages 1928–1935. IEEE, 2017.

[58] Homayoun Seraji. Reachability analysis for base placement in mobile manipula-
tors. Journal of Robotic Systems, 12(1):29–43, 1995.

[59] Victor A Shia, Yiqi Gao, Ramanarayan Vasudevan, Katherine Driggs Campbell,
Theresa Lin, Francesco Borrelli, and Ruzena Bajcsy. Semiautonomous vehic-
ular control using driver modeling. Transactions on Intelligent Transportation
Systems, 15(6):2696–2709, 2014.

[60] Paulo Tabuada. Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media, 2009.

[61] Russ Tedrake and the Drake Development Team. Drake: A planning, control, and
analysis toolbox for nonlinear dynamical systems, 2016. URL http://drake.
mit.edu.

[62] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-
trees: feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research, 29(8):1038–1052, 2010.

[63] Martin Treiber and Arne Kesting. Traffic Flow Dynamics: Data, Models and
Simulation. Springer, Berlin, 2013. ISBN 978-3-642-32459-8.

82

[64] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-
tonomous driving in urban environments: Boss and the urban challenge. Journal
of Field Robotics, 25(8):425–466, 2008.

[65] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. Receding hori-
zon temporal logic planning for dynamical systems. In Proceedings of the 48th
Conference on Decision and Control, pages 5997–6004. IEEE, 2009.

[66] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. Receding hori-
zon temporal logic planning. Transactions on Automatic Control, 57(11):2817–
2830, 2012.

[67] Zhixing Xue and Ruediger Dillmann. Efficient grasp planning with reachability
analysis. International Journal of Humanoid Robotics, 8(04):761–775, 2011.

83

